BRAKEthrough Solutions

Take a Brake!

Group 8

Deliverable A

PD D quality check • Elsa L.

PD E quality check • Tahmeed K.

PD F quality check • Bradley C.

- **Backstory** • Team Contact Interview Guide **Current Situation** • Wrike Chart GNG 2101 Project • Elsa L. +3 Gait PD D.1 • Bradley C. +3 Design Day PD D.2 • Elsa L. +3 Execution Trainer PD C: Concepts PD D: Detailed design • Tahmeed K. +3 D F: Project progress presentation • Bradley C. +3 Function Olient meet 2 • Matt W. +3 PD F: Prototype 2 Client meet 3 PD H: Design day D D.1.8: BOM • Bradley C. PD G: Business model and economics report • Matt W onitoring and Contro PD E project plan update
- Who is the intended user?
- What setting is this commonly used in?
 - How should someone control the brake?

- Interview planned Sept. 15th, one week after interviews carried out
 One week delay in the project
 One group member dropped course
 - Re-assign all tasks to four people

Gait Trainer

Need Statements

"My biggest concern for my son is his safety. I don't want him to get hurt by the device."

"I want a system that allows my son to socialize and move independently without having to ______ have a parent or guardian an arms length away at all times." The braking system is safe and reliable.

The braking system can be activated from a distance.

"The client needs a safe and reliable remote braking system for his son's pediatric gait trainer, the R82 Crocodile. It can be activated from a distance to let him practice walking independently—most existing brakes are manual and require the guardian to be within arms reach. This will be achieved by having a Bluetooth remote activation of a mechanical spring-based friction braking."

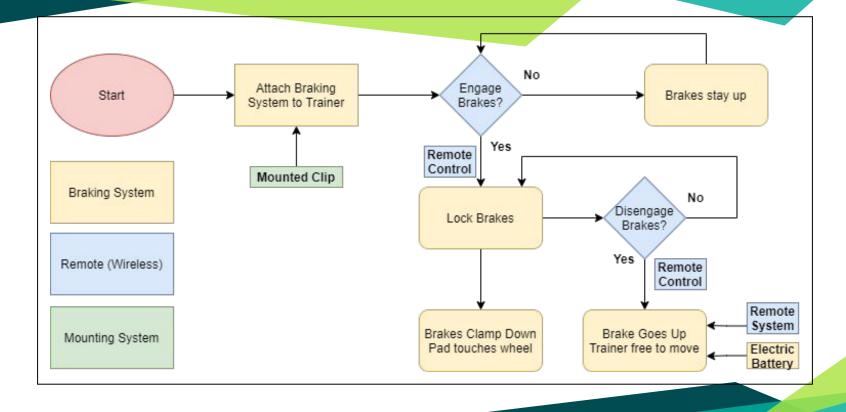
Metrics

Metric	Units	Client Statements		
Functional Requirements				
Braking Distance	Metres (m)	The braking system is safe and reliable.		
Non-Functional Requirements				
Mass	Kilograms (kg)	The system is adaptable to multiple versions/models of gait trainers and users		
Constraints				
Cost	CAD (\$)	N/A		

Technical Benchmarking

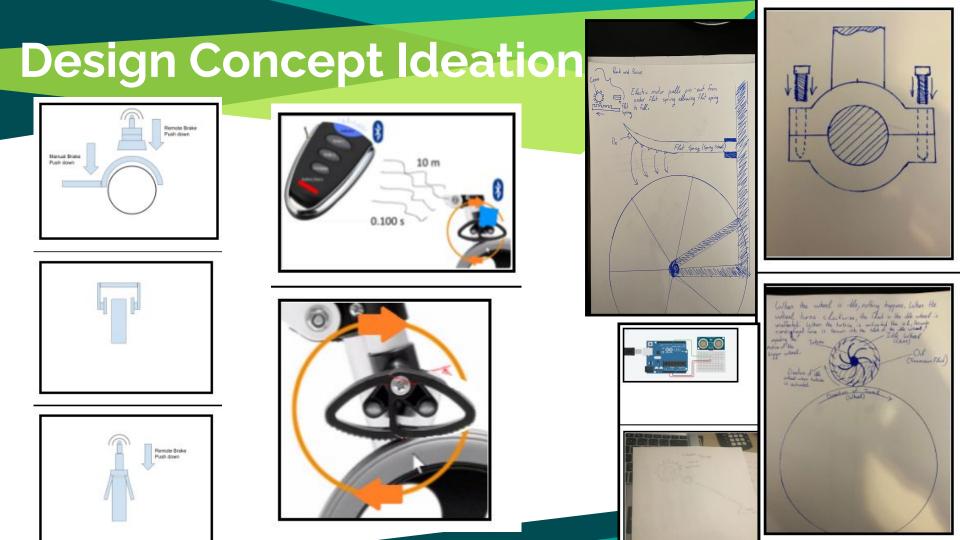
Product and	Importa	Rollator	Grillo Gait	R8	Rifton
company	nce	Brakes	Trainer	Crocodile	Pacer Gait
	(weight)		Brakes	Hand	Trainer:
				Brake	Rifton
					Casters
Activation Method	3	1	2	1	2
Function	2	3	2	2	1
Cost	1	3	2	2	1
Total		12	12	9	9

Target Specifications

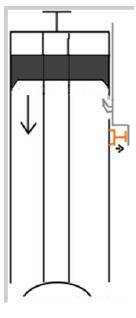

Design	Relation (=, <	Value	Units		
Specifications	or >)				
Functional Requirements					
Braking Distance	<	Ideal: 1 Acceptable: 2	m		
Non-functional Requirements					
Mass	<	Ideal: 3 Functional: 5	lbs		
Constraints					
Cost	≤	Ideal: 100	CAD		

Deliverable C

System - Subsystems


- Braking Mechanism
 - Stopper, Piston, Material
- Remote Controller
 - Bluetooth, Buttons, etc
- Mounting System

Functional Decomposition Flowchart


Design Criteria

- Safety
- Durability
- Remoteness
- Portability
- Environmental Versatility
- Braking Dynamicity
- Adaptability

Initial Prototype

The initial idea was a "mechanical" design.

What is It?

- 3D Printed Model
- Low Fidelity
- Non Functional
- Intended to gain
 client feedback
 How Does It Work?
- Entirely Mechanical
- Uses Potential Energy
- Is Non-Variable
- Prevents Any Movement
- Manual Reset

Client Meeting 2

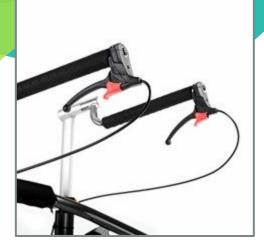
Question: We have designed a system that is not dependent on a full battery life. Would you be against a system that is? "As long as it shouldn't drain the battery after charging overnight, it can be dependent on battery and would have to include an indicator on battery life."

Question: Do you have any suggestions or concerns regarding the shape or function of the initial design? *"Forward and backward motion is not cessential but would be nice."*

"Must be portable and should remain on the gait trainer when folded."

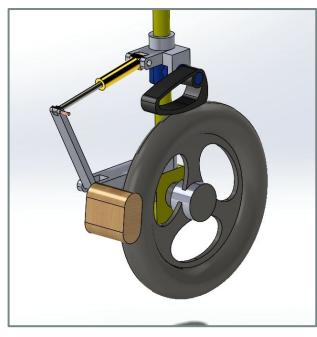
Deliverable D

- Summarize Client Feedback
- First Prototype Description
- Bill of Materials


ltem	Description	Quantity (Approx.)	Price	Source	
Aluminium Flat Bar	Used to make a mounting	3'	\$3.96	<u>Makerstore</u>	
Micro Linear Actuator/Push Pull Solenoid	system for the brake. Used to engage and disengage brakes.	(\$0.11/ft) 1	\$25-\$30	<u>Makerstore</u>	
9V Battery	It's a battery!	1	\$1-\$4	Makerstore <u>https://makerstor</u> <u>e.ca/shop</u>	
Bluetooth HC-05	Allows for bluetooth communication using Arduino	1	\$12.99	<u>MakerLab</u>	
12V Battery	Again, it's a battery.	1	\$8.95	Amazon <u>https://www.amaz</u> <u>on.ca/Energizer-A2</u> <u>3-GP23AE-Alkaline</u> <u>-Batteries</u>	
Arduino Nano	Used for logic and communication.	2	\$8.00	<u>MakerLab</u>	
Total			59.9-67.9		

Prototype 2 Ideation

- Old braking mechanism unsatisfactory
- Variable Braking, Reverse Braking and Full Remoteness must be prioritized.
- A new idea must be brainstormed


Prototype 2 Ideation

- Modify existing Hand Brake
- Use lever + mechanical advantage with a linear actuator
 - Plus reverse stopper toggle

Prototype 2, The "Lever"

Engaged

Disengaged

Action Plan

and Prototype 1.1:

Client Meeting 3

Prototype 1.2 : Remote **Braking Subsystem**

Week 7

Subsystem Week 8

HER

Prototype 1.3 : Mounting Subsystem

Week 9

Prototype 2.1: **Integrated Design**

Week 11

Prototype 3.1: Design Day Subsystem Week 12

- al

Conclusions

 Refined knowledge about Design Process
 Creating and prioritizing design criteria
 Generating with new ideas and evaluating them under client requirements
 Working under tight deadlines
 Functional Prototype next week

Thank you for listening.