
1 

 

Arduino Programming Laboratory Manual 

Objective 

To utilize the Arduino IDE Software platform to write simple control logic commands. This 

control code will be used to make effective use of a variety of inputs and outputs connected to an 

Arduino Uno microcontroller. This lab will also expose students to more complicated control and 

communication codes, and online resources available for the Arduino software. 

Background 

In conjunction with different models of microcontrollers, the Arduino company provides the open-

source Arduino Integrated Development Environment (IDE). This programming environment is 

written in Java and has been designed to introduce programming to an audience that is less familiar 

with coding. Programs written in this environment are called ‘sketches’, and the language used is 

based on the Processing language with support for C and C++ programming languages. 

 

A basic Arduino sketch consists of at least two functions: a ‘setup’ function and a ‘loop’ function. 

The setup function performs any actions that are initially required to run the rest of the program, 

such as initializing any peripheral components and setting the communication frequency between 

the Arduino board and PC. The loop function acts as the programs driver; it runs in a continuous 

loop, and specifies the order of operations that the microcontroller will perform. 

 

Arduino control boards as well as many Arduino-compatible peripherals contain hardware for 

serial communication. This form of communication transmits data one bit at a time over the serial 

connection. This allows the components of the system (or a PC) to communicate larger and more 

complex sequences of data much more easily, without physical input or output pin limitations. 

 

Because of Arduino’s open-source nature, third party companies, as well as end users are free to 

take the software and tailor it to their individual needs. This means that for almost any application, 

sketches are available for download online, and companies making peripherals (such as a motor 

shield or sensors) for use with Arduino boards often have example sketches and sketch libraries 

available for specific use for their products. These resources can be used to create a custom sketch 

that can use many different peripherals at once, by combining aspects of many different example 

sketches. 

 



2 

 

Apparatus and Equipment Overview 

The equipment that will be used in this lab includes: 

● 1 x Arduino Uno R3 Microcontroller 

● 1 x USB 2.0 Type A Plug to USB 2.0 Type B Plug Cable 

● 1 x Lab or Personal Computer (running Windows, Macintosh, or Linux OS) 

● 1 x Ultrasonic ranging module (HC - SR04) 

● 1 x Adafruit Motor Shield V1 (L293D chipset) 

● 2 x DC Motor  

● 1 x Breadboard 

● 4 x Male-Male jumper 

● Arduino IDE Software 

● Corresponding Arduino IDE Libraries (outlined below) 

● 4 x 22 Gauge Wire 

Pre-Lab Preparation 

Before arriving at the lab, students should review the lab manual and familiarize themselves with 

the lab setup and procedures. Students may use their own computer for this lab if they wish, 

provided that they have downloaded and installed the Arduino IDE, as well as the required libraries 

outlined in the downloads section. Reviewing the Arduino IDE syntax, as well as trying to write 

some of the programs beforehand is also encouraged. A useful list of commands used in the 

Arduino IDE can be found here: https://www.arduino.cc/en/Reference/HomePage. 

Downloads 

The Arduino IDE can be downloaded from here: https://www.arduino.cc/en/Main/Software  

The libraries used in this lab can be installed through the library manager in Arduino IDE 

• Adafruit Motor Shield V1 (AFMotor.h)  

• NewPing (NewPing.h) 

• SoftwareSerial (SoftwareSerial.h- this one is pre-installed in Arduino) 

 

To install the required libraries, you will need to access the library manager in the arduino IDE. 

Open the Arduino IDE and navigate to Tools>Manage libraries. 

 

https://www.arduino.cc/en/Reference/HomePage
https://www.arduino.cc/en/Main/Software


3 

 

 
Figure 1: Arduino library manager.  

 

The library manager tab should open up from the left side of the window. Now, search for the 

required libraries listed above and install. Do this for each library. You might need to reboot the 

IDE. 

 

If you have libraries that need to be imported into the IDE it is possible by using the ZIP file, go 

to Sketch>Include library>Add .ZIP Library... and browse to and select the folder that contains the 

library or libraries that need to be added. 



4 

 

 

 
Figure 2 : Arduino included libraries  

Review Questions 

What is the role of a microcontroller? 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

Which microcontroller are we using in this lab? 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

How can the ultrasonic sensor measure distance? 

 



5 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

How will the motors be controlled to rotate in both directions? 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

Which wireless communication method are we using? 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

Procedure 

Sensitive electrical components like the control boards and sensors used in this lab can be damaged 

or destroyed from static discharge from mishandling during assembly and use. Before setting up 

this lab, students should ensure that their workstation is statically prepared (non-metal workstation, 

no carpet/other fibrous materials), and they have grounded themselves by touching a large metal 

object before handling the components. There are accessories to improve the assembly workstation 

for static resistance, such as an antistatic mat and static wrist/ankle straps, which should be used if 

available. 

Part A – LED Blink Program 

This program will go over the basic method to connecting and programming an Arduino 

microcontroller. It utilizes a sample sketch included in one of the Arduino IDE’s default libraries, 

and is primarily used for verifying that the microcontroller and the connection are both functioning 

properly.  

1. Connect the Arduino board to an open USB port on the computer with the USB cable. The 

Arduino board should light up, as it draws power through the USB connection.   

2. Launch the Arduino IDE Software, and open Tools→Board→Arduino Uno from the 

drop-down menu. Back in the ‘Tools’ tab, select ‘Port’ and choose the serial port that the 

Arduino is connected to. If the correct serial port is not apparent, unplug the Arduino, and 

see which port disappears. Re-connect the board and select that port. If you don’t select 

the correct serial port, then you won’t be able to see any printed output. 



6 

 

 
Figure 3 : Arduino port selection 

If the port is not detected by the IDE it may be a driver error. Try to download and install the 

following CH340 driver on your computer: http://www.wch-

ic.com/downloads/CH341SER_ZIP.html  

 

3. Open File→Examples→01.Basics→Blink. This will open a sketch that looks like the one 

below. 

 

Figure 4 : Blink example 

http://www.wch-ic.com/downloads/CH341SER_ZIP.html
http://www.wch-ic.com/downloads/CH341SER_ZIP.html


7 

 

4. Now verify and upload the sketch to the Arduino board. To verify, click the check mark in 

the upper left hand corner. The Arduino IDE will try to compile the sketch (without 

uploading to the board), and warn of any syntax errors in the programming. Once this is 

complete, press the upload button (arrow beside the check mark). The sketch will 

recompile, and upload to the board.   

 
Figure 5 : Verify and upload buttons 

5. Once the upload is complete, the program will automatically run on the microcontroller. 

In this case, the LED labeled ‘L’ on the Arduino should flash slowly. Show the TA your 

work. 

6. Navigate to sketch → Include a library → Manage libraries, a list of libraries will appear. 

7. Search and install (by hovering to the item and clicking on install) the following 

libraries: 

a. NewPing 

b. Adafruit Motor Shield Library V1 

Part B – Sensor Reading 

This program will automatically poll an ultrasonic sensor, causing the sensor to emit an ultrasonic 

sound pulse. The program will read the elapsed time between sending the pulse and receiving an 

echo, convert the time to distance using the speed of sound, and print the distance to the computer 

screen via the serial port connection.  

1. Connect an ultrasonic sensor to the Arduino board by using the wiring diagram below. The 

Arduino board should still be connected to the computer via USB cable. 

a. Don’t just blindly follow the diagram, make sure you are connecting GND to 

GND and Vcc to 5V. Make sure the echo and trig pins are connected properly 

as well. 

b. If the lights on the Arduino turn off it means you have a short circuit! Unplug the 

wires quickly and check your connections. 



8 

 

 
Figure 6 : Wiring of the ultrasonic sensor 

 
Figure 7 : Placement of the ultrasonic sensor in a breadboard 

2. Open a new example sketch in the Arduino IDE. The specific example will be included in 

the “NewPing” library that should have been added to the Arduino IDE. Go to 

File→Examples→NewPing→NewPingExample. 

3. Change the pins on the Arduino that are used to send and receive data to the sensor. Alter 

the two lines in the beginning of the sketch that define the echo and trigger pins (the default 

pins are 11 and 12 respectively) to send a trigger through pin 13 and receive an echo 

through pin 2 (see below). 

 



9 

 

  

Original New 

Figure 8 : Modification of trigger and echo pin 

 

4. Compile and upload this example to the Arduino board. Be sure to verify that the correct 

board is selected (Arduino Uno), and the proper com port is being utilized.  

5. Once the example has been uploaded, open the serial monitor to see the sensor data. Click 

the icon in the top right corner of the IDE, or go to Tools→Serial Monitor.   

6. Set the baud rate of the serial monitor to correspond to the baud rate specified in the 

example sketch. Select the correct baud rate by utilizing the drop down menu in the lower 

left hand corner of the serial monitor window. In this case the baud rate should be 115200. 

After a few moments distance measurements should start to appear in the monitor window.  

a. If you see 0cm, it is possible that the trig and echo connections have been 

reversed.  

Q1. What is the difference between the ECHO and the TRIG pins of the sensor? 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

Q2. What is the function sonar.ping_cm() calculating? 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

Part C – DC Motor Control  

This program will test and control two DC motors using a pre-set sequence of commands. 

1. Disconnect the sensor from the Arduino. Insert the motor shield board into the Arduino 

headers.  

2. Connect a DC motor to port M1 on the motor shield by inserting the motor wires in the 

blue terminal block and using a screwdriver to clamp them in place.  



10 

 

 
Figure 9 : Motor shield connected to arduino 

  
Figure 10 : Motor shield pins overview 

 
Figure 11 : Motor pin 

Align the pins at the 
back of the arduino 

You can use tape to hold the 
wires in place 

*Be careful of the motor 
terminals, they are fragile 



11 

 

3. Open the example found in File→Examples→Adafruit Motor Shield Library→MotorTest. 

This example sketch runs a DC motor connected to port M1 on the motor shield.   

4. The motor test example controls a motor connected to port M4 by default. Change this port 

to port M1 by changing the line shown below. The new line should read “AF_DCMotor 

motor(1);”. 

 
Figure 12 : Change of motor pin from M4 to M1 

5. Compile and upload this sketch to the Arduino board. Verify that the DC motor spins in 

conjunction with the programming. Show your work to the TA.  

6. Swap the connections in the M1 port.  

Q3. What happens? Why? 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

7. Now add commands to control a second DC motor in conjunction with the first motor. 

Connect a DC motor to port M2 on the motor shield (see below).  

8. Add command lines to the sketch to control the second motor. Start by initializing the new 

motor and the port on the motor shield being used. Write an additional AF_DCMotor line 

below the one that was altered in Step 4. Both AF_DCMotor statements should name their 

corresponding motor a unique name (see below).  

 



12 

 

Figure 13 : Initializing a second motor 

9. Each motor statement within the sketch will now have to be modified to reflect the new 

motor name. Add a second motor statement below every existing motor statement (not just 

the ones shown) in order to control the second motor (see below). 

 
Figure 14 : Configuring the second motor 

10. Compile and upload the sketch. Verify that both motors now spin in unison. Show the TA 

your work. 

a. Sometimes the computer isn’t capable of giving enough power for both motors, if 

this is the case you might need AA batteries as external power for the shield. 

 



13 

 

Q4. What happens when the function ‘run’ is given the parameter RELEASE? 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

Q5. How does the ‘for’ loop work? 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

Part D – Bluetooth Motor Control  

This program will use incoming data from a BluetoothLE compatible device to control the motors. 

The sensor will act as a check that will limit when the motors can be used.   

1. On your smartphone, download the application called Simple Ble Joystick on the 

AppStore. 

a. You can find the Android version of the app here: https://apkcombo.com/simple-

ble-joystick/ru.experementy.simpleblejoystick/ 

2. Now you will write the code that will allow you to control the chariot with the app you just 

downloaded. First, include all the necessary libraries as shown in the picture below. 

 
3. Initialize the ultrasonic sensor and the motors. 

 
4. Initialize the Bluetooth sensor pins. 

 
5. Define two variables that will be used in the program. 

 
6. In the setup function, setup the motor speed, start the serial monitor and initialize the 

Bluetooth module commands.  

https://apkcombo.com/simple-ble-joystick/ru.experementy.simpleblejoystick/
https://apkcombo.com/simple-ble-joystick/ru.experementy.simpleblejoystick/


14 

 

  
7. In the loop function, write the code that will allow the smartphone to control the chariot 

via the Arduino and the Bluetooth module. 

 



15 

8. Now add statements to control the sensor. Create a new function and call it

“sensor_read()”. Have the function ping the sensor, print the distance to the serial port, and

set the Boolean variable initialized earlier to “true” if the read distance is greater than 10.

Remember that a read value of “0” means the distance is out of range. If there is something

less than 10 cm away from the sensor, set the Boolean variable to “false”. See the example

below for reference.



16 

Q6. Based on the code, explain the expected behavior of the chariot. 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

9. Finally compile the sketch and upload it to one of the test cars available in the lab. Open

the serial monitor and make sure that everything is working perfectly.

10. With your phone, control the car by using the Simple Joystick App. Select your Bluetooth

module, choose the controller pad on the right and start pressing the buttons. Make sure

the motors are moving.

Make sure to save this code somewhere you will be able to find later, to use in a later lab with your 

chariot. 

Here is the complete code for reference: 

/* Chariot */ 

#include <AFMotor.h> 

#include <NewPing.h> 

#include <SoftwareSerial.h> 

#define TRIGGER_PIN  A0  // Arduino pin tied to trigger pin on the ultrasonic sensor. 

#define ECHO_PIN     A1  // Arduino pin tied to echo pin on the ultrasonic sensor. 

#define MAX_DISTANCE 200 // Maximum distance we want to ping for (in centimeters). 

//Maximum sensor distance is rated at 400-500cm. 

NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE); // NewPing setup of pins and 

maximum distance. 

AF_DCMotor leftmotor(2); 

AF_DCMotor rightmotor(1); 

SoftwareSerial mySerial(10, 9); // RX, TX 

boolean prox; 

int distance; 

void setup() {



17 

 

  // put your setup code here, to run once: 

  leftmotor.setSpeed(200); 

  rightmotor.setSpeed(200); 

   

  mySerial.begin(9600); 

  Serial.begin(9600); 

} 

  

void sensor_read() { 

  delay(250); 

  distance=sonar.ping_cm(); 

  Serial.println(distance); 

  if (distance > 10 or distance == 0) { 

    Serial.println ("No obstruction"); 

    prox=true; 

  } else { 

    Serial.println("Obstruction"); 

    prox=false; 

  } 

} 

  

void loop() { 

  char reply[100]; 

  int i = 0; 

  while (mySerial.available()) { 

    reply[i] = mySerial.read(); 

    i += 1; 

  } 

  sensor_read(); 

  //end the string 

  reply[i] = '\0'; 

  if(strlen(reply) > 0){ 

      Serial.println(" pressed"); 

      Serial.println(reply); 

      if (reply[0] == 'C') { // Go backward! Yes, I know that it says run forward 

        if (prox == true) { 

        rightmotor.run(FORWARD); 

        leftmotor.run(FORWARD); 

        Serial.println(reply); 

          } 



18 

 

        else { 

         rightmotor.run(RELEASE); 

         leftmotor.run(RELEASE); 

          } 

        } 

      if (reply[0] == 'A') { // Go forward! Yes, I know that it says run backward 

        rightmotor.run(BACKWARD); 

        leftmotor.run(BACKWARD); 

        Serial.println(reply); 

        } 

      if (reply[0] == 'D') { //turn left 

        rightmotor.run(BACKWARD); 

        leftmotor.run(FORWARD); 

        delay(250); 

        rightmotor.run(RELEASE); 

        leftmotor.run(RELEASE); 

        Serial.println(reply); 

        } 

      if (reply[0] == 'B') { //turn right 

        rightmotor.run(FORWARD); 

        leftmotor.run(BACKWARD); 

        delay(250); 

        rightmotor.run(RELEASE); 

        leftmotor.run(RELEASE); 

        Serial.println(reply); 

        } 

    } else { 

      Serial.println("released"); 

      rightmotor.run(RELEASE); 

      leftmotor.run(RELEASE); 

    } 

} 

Additional resources  

● Arduino is open source which means there is lots of information out there. To start you can 

browse https://www.arduino.cc/en/Tutorial/HomePage to find tutorials and extra 

information. 

● Adafruit also has lots of tutorials on many different types of Arduinos and sensors, 

https://learn.adafruit.com/.  

https://www.arduino.cc/en/Tutorial/HomePage
https://learn.adafruit.com/

	Q1 What is the difference between the ECHO and the TRIG pins of the sensor 1: 
	Q2 What is the function sonarpingcm calculating 1: 
	Q3 What happens Why: 
	Q4 What happens when the function run is given the parameter RELEASE 1: 
	Q5 How does the for loop work 1: 
	Q6 Based on the code explain the expected behavior of the chariot: 


