E CUBED

Prototype lll and Customer
Feedback

E Cubed Group (P2)

Deliverable H Rares Constantin Serban
Emma Belal

November 24th Louis-Philippe Keith

Abstract

This deliverable details our final prototype and the updates made to it from the previous
two. The prototype test results are positive and in line with our target specifications. We
have received our final set of comments and feedback from our fellow peers and are
considering them for final touches and future advancements in the product.

Table Contents

INTFOTUCTION 1eiiniiiiiii ettt e e e e e e e e et e e et sa et eneenaanns 4
e fo (o1 Y o LT I o1 (== PP 4
L@ ESTCT o | oL (=T o =T N 5
EMPLoyee REGISTration ...u.in ittt ettt et e e et e et e e e eneananeananens 8
LOCAtION TraCKING «.cneniniii ittt et e et e et e e e e ea e eanenenaeaneans 10
Integration Of Shabodi APlttt e et e e ee e aneans 16
PrototypiNg TeST PLlan vttt s s e e e e e e e e e e e anaanas 18
PrototypPiNg RESULLS ...u vttt e e ettt e e e s e sa s e e e s eeenenensnsnsnsnnes 18
User and ClIieNt FEEADACKcuiiniiniiiiiii et eaee 19
(7015 T¢] LU E=] (o] o TR PPN 20

[RT=Y (=Y (=] o= 1= 21

Introduction

This deliverable will detail our final prototype, prototype three. Prototype three is a
comprehensive high-fidelity model. We will detail an overall map of prototype three and its
features. The features that are implemented here are a user interface (Ul), facial
recognition processing, user registration and update, access logs, location tracking and
notification transmission. From our test plan we have gathered results which will
emphasize the completeness of our product. In addition to prototype testing, we have also
gathered user feedback. This feedback will help us refine the final product and prepare for
Design Day.

Prototype Three

Prototype three is a consequence of prototype one and prototype two. Itis the closet
version we have to a fully-fledged product. The focus was to develop a Ul, implementing
location tracking, and integrating one Shabodi APl into the product. The only APl we can
implement is bandwidth; we would like to implement latency, jitter, and location from
them. Since we are unable to use those three APIs, we found an alternative location to use
in our application. This is so we can fully develop our product and have the best version
possible to demonstrate on design day.

Location tracking has been implemented in our product, via phone interaction with our
Flask Server. This is an alternative to the Shabodi location tracking API. Location tracking
improves our application since it adds additional information for the administrator.
Location tracking was also a requirement we had gathered from the first client meeting.

The most significant update we have made is adding a Ul. The development of an interface
takes our product from being purely backend to a functional utilitarian product. The Ul
allows people without coding experience to be able to use the product. This allows
enterprises to integrate web applications into their companies without having to train their
staff in python coding. Additionally, a web application saves companies from having to
download and update software frequently. Currently, our web application is private for
testing purposes.

The implementation of Shabodi’s APIs is also a requirement from the first client meeting.
Since the only APl available currently is bandwidth. We have chosen to implement it. This
implementation is to demonstrate to the client that we can use their product. Ideally, we
would like to implement more practical APls like jitter and latency. These would improve

the performance of our product and make it more seamless for the client.

User Interface

The user interface is the integration of our two previous prototypes. This allows the
administrator to use the product without any knowledge of coding. The addition of a Ul also
fulfils the client's need to have an application. Our interface is a web application, we chose
this to avoid having system integration errors and increase the flexibility of the product.

Features of the interface include:

- Login page for both administrators and employees
- Administrator’s employee registration form

- Administrator's employee location request page

- Logfiles of all access attempts for the week

- Dooraccess pin prompt

- Facial recognition verification system

@ M [Company Access Fortal

@ 127001

Company Access Portal

Figure 1: Home Page of Ul

(im]] Admin Login

O «
= (

< O @ 127001

Admin Login

Username:

rares_1

Password:

3 =3 3

,r. Q Ssearch = " L/ H » E 0 o A W E BT

Figure 2: Administration Login in Page

e @ [F7 AdminDashboard
&

< C @ 127001

Admin Dashboard

Register User Update User Facial Recognition m

Figure 3: Administration Dashboard

e M [J Employee Dashboard

& G @ 121001

Employee Dashboard

Facial Recognition

Figure 4: Employee Dashboard

Employee Registration

Employee Registration is another update from our previous prototypes. This allows the
administrator to register and unregister employees. This is an easier system compared to
what we had previously. Originally the administrator would need to enter the user's
information manually into a directory file that was in python. This would not be practical, or
time efficient. It would also require the staff to be trained in python coding.

In addition to this the administration can update the employee information from a
specified portal. This makes it easier than having to unregister and register employees
when information such as email changes.

[Register User

@ 127.001

Register User
]

Username:

rares 1

Access Level:

Employee ~

Password:

Phone:
Email:

Face Image:

Choose File | No file chosen

Stop Registration

8 0 w 7

Figure 5: Registration Interface with example username and password

e fp M [Update User Information

& G @ 121001

Update User Information

User Name:

rares_1 ‘

3 E3

rc.serban07@gmail.com ‘

Email:

Name:

Rares Serban ‘

Phone:

8195937402 ‘

Figure 6: Updating User Interface with example information

Location Tracking

Location tracking is established by a wireless connection between our iPhones and the
Flask Server. This method allows for high accuracy location retrieval regardless of any
external factors (e.g. cell towers).

The following steps show how to set the system up:

Open the Shortcuts application on your iPhone.

On the top right corner, press the “+” button to create a new Shortcut.

In the Search Actions toolbar, type “Get current location” and click on it.
Click again on “Search Actions” and look for “Get Details of Locations”.
From the newly added rectangle box, click on the “Detail” case and under
“Variables”, select “Latitude”.

6. Repeatstep 5 but select “Longitude” instead of “Latitude”. If the second box
contains anything other than “current location”, press on it and change it
accordingly.

S S e

10.

11.

12.

Click again on “Search Actions” and find “Get Device Details”. Make sure that the
action gets the “Device Name” (your device identifier).

Click again on “Search Actions” and find “Get Contents of URL”.

Clear all variables in the box and enter http://<your IP
address>/<port>/update_location. If you don’t know your local IP address, open
your command prompt and type “ipconfig”. The information on the left of the IPv4
field is your local IP address. Typically, your port is 5000.

Next to the entered information, click on the little arrow. Change the Method to
“POST”. Make sure the Request Body is “JSON”.

Click on “Add new Field”. The first two fields are “Number”. Instead of “Key”, type
“lat” for the first one and “lon” for the second. Instead of the inscribed number,
select the blue “Latitude” icon for the first one and “Longitude” for the second. For
the third, select “Text”, name it “device_id” and select the blue “Device Name”
icon.

Optional: Under “Search Actions”, look for “Show Notification”, and write the
notification you wish to see when the Shortcut is successfully executed.

Now you must set up your Flask server. N.B. This procedure includes two categories of

users (admin and employee):

1.
2.

Install SQLite database on your desktop.

Create two separate Python files. You can name the first “admin_locations.py” and
the second one “employee_location.py”.

On “admin_locations”, you can copy the code you find in the annex. With this, you
will create an SQLite database with 5 fields: “id”, “device_id”, “lat”, “lon” and
“timestamp”. After running the code and accessing the IP address given to you in
the terminal you should see a page saying, “Waiting for location data”.

Run the Shortcut on your iPhone and reload your page. You should now see an
interpreted map (by Folium) and a pin indicating your current location.

If you run multiple Shortcuts all directed to the same IP address, you should see all
the locations of all the devices.

On “employee_location”, you can copy the second code you find in the annex. This
code doesn’t involve the database.

Execute step 4 again. You should now see your location on the map.

Additional information:

To automate the Shortcut process, you can set up an automation action from the
automation tab in your application. For example, you can say that when you get a
message from “_person_” execute the shortcut. This way, an admin can get the
location of all the employees without requesting their permission or any other
action from their side.
To avoid entering the IP address in the shortcut every time you change Network
connection, you can create a tunnel for your specific port. This way, you can send
the location from anywhere if you have some kind of Network connection. If you
want to do that, follow these steps:
1) Install “ngrok”
2) Gotoyou command prompt and type “ngrok http <your port
number>”
3) Ifyou’re onthe free trial version, don’t close the command prompt
and note that you can only create a tunnel for one port at a time.
4) Nextto the “Forwarding” field, you should see something resembling
this: https://a7¢5-137-122-64-245.ngrok-free.app
5) Type this address instead of the IP address you currently have in the
Shortcut, while keeping the route (“update_location”). It should look
like this: https://a7¢c5-137-122-64-245.ngrok-
free.app/update_location
6) Now you should be able to send your location from anywhere you
currently are, if you’re connected to the internet.
If you want to run these codes together in parallel with your main application, at the
same time, you must run the files on different ports. For example, run the main
application on port 5000, employee_location on port 5001 and admin_locations on
5002. Don’t forget to change the information in the Shortcut as well if you need (if
you don’t use the tunnel)!

#admin_locations code example

from flask import Flask, render_template, request
from flask _sqlalchemy import SQLAlchemy
import folium

from datetime import datetime
import bandwidth

https://a7c5-137-122-64-245.ngrok-free.app/
https://a7c5-137-122-64-245.ngrok-free.app/update_location
https://a7c5-137-122-64-245.ngrok-free.app/update_location

app = Flask(__name_)

app.config["SQLALCHEMY DATABASE_URI"] = "sqlite:///locations.db"
app.config["SQLALCHEMY TRACK_MODIFICATIONS"] =
db = SQLAlchemy(app)

Devicelocation(db.Model):
id = db.Column(db.Integer, primary_ key=)
device id = db.Column(db.String(50), unique= , hullable=

lat = db.Column(db.Float, nullable=)
lon = db.Column(db.Float, nullable=)
timestamp = db.Column(db.DateTime, default=datetime.utcnow)

with app.app_context():
db.create_all()

@app.route("/update_location", methods=["POST"])
update_location():
data = request.json
print(“Raw request data:", request.data)
print(“Parsed JSON data:", data)

if data:
print("No JSON data received.")
return {"status": "error", "message": "No JSON data received."}, 400

device_id = int(data.get("device id"))

api_token = bandwidth.get_access_token()
bandwidth.invocation(api_token, device_id)

lat = data.get("lat")
lon = data.get("lon")

if all([device_id, lat, lon]):
missing = [k for k in ["device_id", "lat", "lon"] if data.get (k)]
print(f"Missing fields: {missing}")
return {"status": "error", "message": f"Missing fields:
'.join(missing)}"}, 400

try:

existing device =
Devicelocation.query.filter by(device_id=device_id).first()
if existing device:

print(f"Updating location for device id: {device_id}")
existing device.lat = float(lat)
existing device.lon = float(lon)
existing device.timestamp = datetime.utcnow()
else:

print(f"Inserting new device id: {device id}")
new_device = Devicelocation(
device id=device id, lat=float(lat), lon=float(lon)
)
db.session.add(new_device)
db.session.commit()
except Exception as e:
print(f"Error inserting/updating data: {e}")
return {"status": "error", "message": "Failed to insert or update
data."}, 500

return {"status": "success", "message": "Location updated."}, 200

@app.route("/™")
index():

Display a map with all device locations.
devices = Devicelocation.query.all()
if devices:

return "No device locations available."

avg_lat = sum([device.lat for device in devices]) / len(devices)
avg_lon = sum([device.lon for device in devices]) / len(devices)
map_object = folium.Map(location=[avg_lat, avg lon], zoom_start=10)

for device in devices:
tooltip = f"Device: {device.device_id}\nLast Updated:
device.timestamp.strftime('%Y-%m-%d %H:%M:%S")}"
folium.Marker(

[device.lat, device.lon],

tooltip=tooltip,

icon=folium.Icon(color="blue", icon="info-sign")
).add_to(map_object)

html map = map_object. repr html ()
return render_template('device locations.html®, html_map=html_map)

if _name__ == "_ main__ ":
app.run(host="0.0.0.0", port=5000, debug=

#temployee location

import folium
from flask import Flask, render_template, request

import bandwidth

app = Flask(__name_)

latest location = {"lat": , "lon":

@app.route("/update_location”, methods=["POST"])
update_location():

Receive real-time GPS data (latitude and longitude) from the iPhone.

latest_location
data = request.json

device_id = int(data.get("device_id"))

api_token = bandwidth.get access_token()

bandwidth.invocation(api_ token, device id)

if "lat" data "lon" data:
latest location["lat"] data["lat"]
latest_location["lon"] data["lon"]
return {"status": "success"}, 200

return {"status": "error", "message": "Invalid data"}, 400

@app.route("/")
index():

Display the latest location on an interactive map.
if latest location["lat"] latest location["lon"]:
return "Waiting for location data..."

map_object = folium.Map(location=[latest_ location["lat"],
latest location["lon"]], zoom_ start=15)
folium.Marker(
[latest location["lat"], latest location["lon"]],
tooltip="Current Location",
icon=folium.Icon(color="green", icon="info-sign")
) .add_to(map_object)

html_map = map_object. repr_html_()

return render_template('device locations.html', html_map=html_map)
if _name__ == "_main__ ":

app.run(host="0.0.0.0", port=5001, debug=

Integration of Shabodi API

Unlike the two previous prototypes we were able to implement the bandwidth. Bandwidth
was chosen since it was the only APl we got to operate. Bandwidth is not being directly
used in our prototype. The purpose of bandwidth is to give the companies the ability to
restrict their cameras to specific areas. This will help with performance, considering not all
cameras need to operate at once. ldeally, we would like to add latency and jitter APIs.
These two APIs would help with our prototype performance.

import http.client
import json

def get_access_token():
conn = http.client.HTTPConnection("192.168.3.18", 31002)
payload = json.dumps({
"client_id": "@b9972cl-a76f-4c44-9ee4-9f6990811434",
"client_secret": "glInNkl-kQRueYHj3DmvNALQK8pGw U dlpL38A6Rqc"
})
headers = {
'Content-Type': 'application/json'
}
conn.request("POST", "/security/vl/token", payload, headers)
res = conn.getresponse()
data = res.read()
token_data = json.loads(data.decode("utf-8"))
access_token = token_data.get("access_token")
conn.close()
return access_token

invocation(access_token, device_id):
conn = http.client.HTTPConnection("192.168.3.18", 7999)
payload = json.dumps({
"device": {
"deviceld": device_ id
¥
"maxBitRate": 400,
"direction": "uplink",
"duration": 10000
})
headers = {
'Content-type': 'application/json',
'Authorization': f'Bearer {access token}'

}
conn.request("POST", "/qos/vl/bandwidth", payload, headers)

res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))
conn.close()

if _name__ == '_main__"':
access_token = get_access_token()
if access_token:

invocation(access token)

else:
print("Failed to retrieve access token.")

Prototyping Test Plan

Table 1: Remaining Schedule until Design Day

Week November 18™ Week November 25t

Finish the coding of the final product and Finish the PowerPoint presentation and get
include at least 1 API. Final product prepared for the pitch. Code is ready to
(code) must work consistently well demonstrate to everyone.

Prototyping Results

We tested two pervious systems to ensure that they are still functioning as expected post
Ul creation. The facial recognition system and notification were tested in parallel by
running multiple trials. A person would present their face after entering the pin information
for the door. If the input information and user’s face would match the door would ‘unlock’
and the admin would not receive a notification. This would count as a correct event.
Similarly, if the information did not match and the administration received a notification it
would also be a correct event. On occasion the facial recognition system would take longer
than 5 seconds to process, which we considered a failure.

For location accuracy we did a trial over a period of time and locations. The administrator
would request to have the location of a registered employee’s phone number. We would
receive the coordinates and measure how far they were from the phone's location. The
average test results were below 20 m2.

Testing the registration system, we added 2 people to the directory to see if the information
could be saved. To test if this was correct, we had the users enter their pins into the ‘door’
and then see if they were granted access after the facial recognition system started. This
worked multiple times for the 2 employees.

Testing the ability to update user information we had the two registered employees enter in
a different phone number or email to see if they were still able to receive ‘access granted’
notifications. This worked on the 5 trials we did.

Table 2: Testing Results for Prototype 3

Subsystem Accuracy Number of attempts
Facial recognition 95% 20

Location tracking Accurate to 20 m?~ 4-5m 20

radius

Notification 100% 20

Log-In System 100% 20

Registration - New 100% 2

Registration - Update 100% 5

User and Client Feedback

We asked family members and other people in our lab section. They have all motioned that
our prototype seems very easy to use, and it is very utilitarian. The most common
complaint about our software is that there is no “help” button to show new users how to
use our software. Since our team will be there to explain how to use the software it does
not matter if we don't have a help button since we will be there to teach them. We will also
be creating a user manual for whomever has questions. The following table shows the
comments we collected.

Table 3: Comments and Feedback

Person commented Positive feedback Things needed
improvement
Classmate 1 | really appreciate how clear | | would like to see the GPS
and easytouseitis. locations moving in real

time. | would also like the
help button.

Classmate 2 | really enjoy seeing the If lused it alone it would be
different use cases. | never | hard to understand
thought of making a login
for users and administrator.

Conclusion

To conclude, prototype three passed all our tests with great success and it resembles and
functions a lot like our final product. Prototype three was able to implement location, Face
ID, and notification, all in a user-friendly web application. We have received many positive
comments about our 3" prototype and feedback we could address easily. For our final
product we will try our best to implement one more of Shabodi’s APIs, as well as make the
whole application more presentable.

References

“Update HTML file with app routes” prompt. ChatGPT, OpenAl, 23 Nov. 2024,
chat.openai.com/chat.

