
A1 1

Devin Capaldi

Alexander Karmazin

Justice Koradi

Kevin Jayasekera

Ludovic Provost

GNG 1103

DELIVERABLE K

User Manual

University of Ottawa

3rd of December, 2020

A1 2

Abstract

At the beginning of the semester project group A1 was asked by JAMZ to design a front-end

user interface for the JAMZ delivery service. The following paper is a culmination of the work

done by project group A1 and aims to explain to the reader how the final prototype for this

application was made, as well as to explain to the reader the research behind the prototype.

A1 3

Table of Contents

DELIVERABLE K 1

Abstract 2

Table of Contents 3

Problem Statement 4

Benchmarking 4

Design Criteria 5

Wix 8

Google Maps API 9

Content Manager 10

Introduction to Wix Web Editor 12

Prototype I 14

Prototype II 15

Prototype III 17

Prototype III Use 19

Maintenance of Prototype 19

Future Plans/ Recommendations 20

A1 4

Conclusion 21

Appendix: 23

Addresses Content Manager : 23

ContactForm Content Manager : 23

Coupons Content Manager : 24

Badges Content Manager : 25

PrivateMembersArea Content Manager : 26

Products Content Manager : 26

Code for the home page : 27

A1 5

Introduction

A website was created for the accommodation and processing of orders in the fast food

industry as part of the JAMZ business model. Having been assigned corresponding user

requirements by JAMZ and staff running the GNG1103 course, Group A1 followed the

engineering design process taught in class to conceptualize website elements, choose a method

for website design and prototyping (in our case the WIX web-builder platform) and present our

final prototype, according to the group’s evaluation prepared to be put into production. The

following is a user guide intended to familiarize a user with the product and it’s design history, to

ensure a user is capable of performing modifications for the improvement of overall product

performance, as well as reproducing all work performed by the group in the website’s design.

The design history overviews the team’s Problem Statement, Benchmarking, Design Criteria,

decision to choose the Wix web design platform, work with the Google Maps API, Content

Manager, Prototypes, Maintenance of Prototypes, and Future Plans/Recommendations.

A1 6

Problem Statement

We are to design a User Interface for the Jamz delivery service. The interface needs to

include tracking, a shopping cart, and have a simple, easy to use modern look.

Benchmarking

Skip the Dishes​: The layout of this app was received highly by our clients and the user

reviews seemed to praise the layout of this app. However, the users disliked the fact that tracking

wasn’t accurate and orders took a very long time to reach the user. They also experienced

inconsistent service with some drivers passing off their orders to other drivers, leading to the

long wait times.

Uber Eats​: There is a growing frustration among users that orders are not getting to their

house or are damaged by the time they get there. There were also complaints about overpricing

of certain products. However the simple design is well received by the user base, as well as the

tracking feature.

Doordash​: Many complaints about inconsistent experiences with drivers. There were

many complaints about the tracking on the app being incorrect. Furthermore, there are also issues

with credit cards being incorrectly charged. There are a few positive reviews about having an

itemized receipt so you can see if any mistakes are made. Customers noted that the interface

easily allowed them to contact doordash when they experienced difficulties with order deliveries,

thus improving the overall quality of customer service.

A1 7

Design Criteria

 Needs Design Criterias

1 The interface is easy for the user

to operate and understand.

- Simplicity

- Navigability

- User-Centricity

- Type of interface (website and/or app)

2 The app is able to store a

restaurant’s item(s) inside a

shopping cart.

- Direct inventory interfaces

- Ability to communicate with other programs

3 The app can track the delivery

drone and displays its

whereabouts and a progress bar

to the user.

- Ability to communicate with other programs

- Layout

4 The app shows a list of nearby

restaurants, as well as their

menu(s).

- Direct inventory interfaces

- Ability to communicate with other programs

A1 8

We selected the seven needs based on user and technical benchmarking along with needs

that the client specified in the initial client meeting. We determined that the most important need

was that it needs to be very easy and quick to use. We determined this using the bounce rates that

we found when we were benchmarking. We then determined that the second most important

need is that the website has to have a shopping cart to store and view items. This need was high

on the short list of the clients needs.

We structured the website around the shop and cart section of the website. We

determined that the shopping cart should be visible one each page of the website and it should be

very accessible when browsing through various sections and categories. Thirdly, we prioritized

the functionality of the tracking over the other remaining needs. The clients also specified these

5 A user can login and register for

an account that stores details like

their name and their address.

- Authentication of user and server

- Compatibility with different devices and

browsers

- speed/responsiveness

6 The interface has clean and

modern looks.

- Layout

- Visual style

- Colors

- Reduce user’s cognitive effort

7 The restaurants shown on the app

can be sorted in categories.

- Accessibility

- User-Centricity

A1 9

needs in the first and second client meeting, and they were happy about the functionality of the

tracking.

Although a little bit of work needs to be done to implement the back end to the tracking,

it is quite functional. The fourth need, the visibility of nearby restaurants, is closely related to the

previous need. The back end must be implemented to view restaurants only in your area,

meaning in a 10 kilometer radius. The fifth need was to have a members section on the website,

as they users like to order the same meal multiple times. We have a completely functional

members section with the ability to save locations/address and previous orders.Although this is

fully functional, some of the features, like the use of coupons were not available with the free

version of wix, thus we are not available to test those features.

Our sixth need ties with the first need but it is a little more specific. Many fellow

competitors in the food delivery services industry, have complete modern and clean looking

websites, thus we need to be the same. Lastly, we needed to categorize the menus in categories,

such as breakfast, lunch, dinner etc. We determined this with the use of benchmarking, as we

found that ordering with categories is much easier for the user to find exactly what he or she is

looking for. With application of all of these needs, we were highly confident that our website

would have a high degree of success.

A1 10

Wix

To create the first prototype (along with the rest), we decided to use wix. As we didn’t

have much time to search for other websites designing softwares, and some of us already knew

about wix, we agreed to continue with wix. We were already somewhat familiar with it and we

knew that it would be able to do enough of what we wanted to do. Whether another software

would be better for our project is still unknown, but nonetheless, wix was able to get the job done

very well. The format of wix and the design tools are simple to use, yet very flexible with

creativity.

With the group’s general lack of knowledge/experience on coding, the design tools were

found to be very helpful as we were able to quickly implement different types of images,

backgrounds, texts, buttons, headers, functions, etc… Also, the requests from the clients after

client meetings were able to quickly get met by using the wix features, as it is easy to make

changes to.

If more time was allotted for the project, we may have attempted to discover other

website designing platforms, however we found wix very efficient for our project and would

maybe have been satisfied with it either way. For an added bonus, most features are free and it

only begins to cost money once more exclusive features are being implemented (ex; having a

custom URL address).

A1 11

Google Maps API

Many problems were encountered while figuring out the tracking for the website. The

first one being the “what’s your location?” input box, where a user is asked to enter his address.

Wix does not have any way to suggest addresses depending on what the user has entered and

automatically fill in the box for the user, so code was written to deal with that problem. It works

by showing a repeater (list of text boxes) and adjusting the text inside each text box to a

corresponding address found on Google Maps. Google Cloud was used to obtain an API key so

that the website is allowed to access the Google Maps data (which contains all known addresses)

and can access the billing information and the API requests from the website. The code also

contains a counter that prevents people from spamming the website with API requests. The

API’s that were used on the website are the Places API, Geocoding API and Distance Matrix

API.

Now that we have access to possible addresses, we can let the user enter his address and

it will automatically be saved in the cookies. A part of the code also translates an address into

latitude, longitude and a description so that it can be used to calculate the distance and time from

the restaurant to the user with the Distance Matrix API. The Google Maps element from wix

A1 12

(#GoogleMaps1) can read from either the cookies or the user database to find and display an

address.

The code has been documented and explains what most of the lines do, to facilitate the

implementation of the back-end. It can also be viewed in the appendix below. Furthermore,

every element of the page has a name and can be viewed on dev mode. The API key used, as

well as the full control of the Google Cloud account can be easily switched to another Google

account to provide the team with full control over the information of the website, including the

traffic, the number of errors, the median latency and access to many other services like libraries,

credentials, domain verification, etc.

A1 13

Content Manger

Addresses: This content manager system temporarily stores the address of the user in four

different fields:

- Title: the user’s location as text.

- UserAddress: the full address of the location as an address.

- Latitude: stores the latitude of the location as a number.

- Longitude: stores the longitude of the location as a number.

ContactForm: ​This stores the messages the users enter on the “Our team” page in six sections:

- Submission Time: stores when the user sent the message/review as a time stamp.

- Name: Last name of the user as a text.

- Message: the message from the user as a text.

- Email: the contact email address of the sender as a text.

- Subject: the subject of the message, as filled in on the “Our team” page as a text file.

- First Name: first name of the sender as a text file.

Coupons: ​Stores different coupons for money or percent off. The amount off, code name, time it

is available, minimum subtotal, limit per customer and start time can be changed directly inside

the content manager. Other data can also be filled in like the number of times the code was used.

A1 14

Badges: Badges can be created and customers can be assigned to badges that will show on their

member’s area.

PrivateMembersData: This is where everything about the member’s data is stored, like their

names, addresses, paiement information, etc.

Collections: Contains two columns: Name (text) and Main Media (picture or gallery). This can

be used to change the different subsections of the restaurant menus, like “Hamburgers”,

”desserts”, etc.

Orders: ​This is where the order of the user is stored, like the number of items and the number /

SKU of the different items in the cart.

Products:​ Stores all menu items of all restaurants. Each item has:

- Name: the name of the item as a text file.

- Description: can include the ingredients and other information about the item. The

backend can allow restaurants to modify those themselves. This is stored as a rich text.

- Main Media: a picture of the item, stored as an image.

- Media Items: if the restaurant wants to display more than one image per item. It is stored

as a gallery.

- SKU: this is where the restaurant can input their items as SKU. This facilitates the

management of products and the count of the inventory for restaurants. It is stored as a

A1 15

text file so it can also include letters if any restaurant uses both letters and numbers in

their SKU.

- Currency: It can be changed depending on the country. It will affect what is shown on the

shop page. It is stored as a text.

- Price: The price of the item stored as a number.

- Discounted Price: The discounted price of the item stored as a number. This could be

modified by the restaurant directly.

- Quantity In Stock: Quantity in stock for every item. It can be very useful for the

restaurants. It is stored as a number.

- Weight: This is where the weight of the item can be stored. It can be useful to calculate

the total weight so that the drone knows how to calibrate its motors. It is stored as a

number.

- Collections: This allows the item to be moved form a menu to another easily. The field

type is Multi-Reference, which means it communicates directly with the “Collections”

content manager.

A1 16

Introduction to Wix Web Editor

Project group A1 used the Wix Web Editor to create each of the prototypes, this section aims to

show the reader a brief overview of the website editor and how to work within it.

When first starting up the wix website editor this is the page you are greeted with, you are

given a toolbar as seen on the right-hand side of the screen that allows you to input numbers or

trash pictures as well as add text to the web page etc.

Moving on the left-hand side of the screen you are able to select each page's individual

code and input code onto each of those pages. Also seen on the left hand side is each of these

little bubbles. By clicking on each of these individual bubbles you are able to access editor

features. The top bubble allows you to add or remove pages. The second bubble allows you to

A1 17

select the background of each individual pages, and the fourth bubble allows you to add Wix

apps to your webpage. These bubbles are the only relevant editor features that we’re used in the

making of each prototype

Prototype I

For our first prototype, an effort was made to learn the ins and outs of the website builder

wix, and we created a basic template consisting of 2 sections, the shop and the members area.

The first iteration of the home page is seen below, where the colors, text and buttons were not

final.

The majority of the work in the first prototypes went into the members area. In the

members area, the user can see past orders, store multiple addresses, decide the payment method,

add or remove cards and change his information, for instance; the name, contact info, and main

address. Note, this was only a preliminary iteration of what we were initially striving for.

A1 18

Prototype II

For prototype 2 primary focus was on making the restaurant menu functional. Thus, we

created a content manager that can store products and their information such as their name,

description, a price, etc. to later display them on the shop page. The context manager can easily

communicate with the backend and create or delete products. This allows us to have a sole shop

page for all of the restaurants, and depending on which restaurant is selected, the product gallery

displayed on the shop page will show the corresponding menu items for that specific restaurant.

The backend can also be used to allow restaurants to edit the prices, discounts and descriptions.

A1 19

We also implemented a shopping cart which can be accessed at all times. Inside the cart,

the user can modify items he pleases, use a promo code, add a note to the restaurant, and finally

checkout. The subtotal, total can also be viewed and seen below. Once the user has paid, it will

send a confirmation email, which can also include a QR code or a bar code. To complete what

we had initially planned, our only remaining task was to implement the tracking feature.

A1 20

Prototype III

On the home page, the user is asked to enter his address or he may choose to skip that

step if he has previously saved that information. The address is later used to show a map of the

area using an API key and a google maps element from wix. Since the location is stored, it can

be used later to determine how long the delivery will take as well as the distance. The black

rectangle seen below is a progress bar that can be easily manipulated with the back end to fill up

when certain actions are completed, like when the food is leaving the restaurant and once it is at

its desired location.

The final touches include the addition of an “about us” page and “our team” page.

A1 21

Users can also contact the team on this page. ​Both those pages were inspired by jamz current

website.

A1 22

Prototype III Use

When first entering the website, a user is greeted with the home screen where he/she is

prompted to enter a delivery address. Once the address has been entered or a user has logged in,

they then have the option to proceed to either the “Cuisines and Categories” or the “Restaurant

Selection” sections/tabs, formatted to offer two different methods of browsing and selection of

desired products. This model was implemented for greater flexibility of selection methods. After

a user selects the cuisine/category they desire they select items they wish to purchase, and are

then taken to the shop page, where they select how much of each item is desired, accompanied

by the corresponding cost having selected these values the user clicks the “View Cart” button.

Subsequently, item quantity and cost totals are displayed in the “My Cart” page, where the user

reviews their order and pays for it. The user then clicks the “View Tracking” button, where they

can see updates on their order’s location as it is being shipped to their location. They also have

the option to return to their cart.

Maintenance of Prototype

Although we were able to complete the whole project just by using Wix’s free features,

Wix actually has premium features. Any user of the Wix application can pay to access premium,

exclusive features. There are many options available with different available features, different

durations, and different costs. Furthermore, these options are categorized into two categories;

website and business & ecommerce. In order to enact the ability to purchase items on the website

a subscription is required. A subscription is also required to change the website URL.

A1 23

A1 24

Future Plans/ Recommendations

Due to time constraints there were many things in this project that were planned but were

unable to be acted upon. For example with more time, development of the tracking feature

would’ve been more advanced, changing the pin from a simple red pin to a more representative

pin. There were also talks, in the future about buying a subscription to Wix, and having the

website indexed, as well as a custom web url. We also had plans to release a darkmode version

of the website. The last thing that was planned for the future, is to make this website responsive

to mobile phones. As Wix doesn’t automatically convert to mobile mode, but rather needs

specific development to be made.

If this project is to be done again we recommend that it’s developed in tandem with the

backend application, as a lot of features dependent on the backend would be able to enter into

further development faster, as well as have certainty that it would be fully functional. We also

recommend if this project is to be done again that a Wix subscription is bought upfront so that

money processing features can be developed sooner.

A1 25

Conclusion

In conclusion, we have learned a lot from this project. We feel that this project was

completed to a satisfactory degree with the time constraints. We have learned some difficult

lessons and if we were to do this project again we would really emphasize proper planning and

making better estimations of the duration of building certain features. However, we have a fully

functioning prototype, that if JAMZ wanted to be able to use it, it would be ready in a week.

What separates us from other groups, is the simplicity of our design and in the malleability of the

Wix Web editor platform, we’re able to adapt quickly to new situations, as well as due to our

simple design being able to give very good user experience. We’re thankful to JAMZ for the

opportunity to design for a real client and we’re proud of what we have done.

A1 26

Bibliography

N. Babich, J. Morales, and M. Rae, “Web Page Design: A Comprehensive Guide: Adobe XD

Ideas,” ​Ideas​, 24-Nov-2020. [Online]. Available:

https://xd.adobe.com/ideas/principles/web-design/web-page-design/​.

Barraclough, Dan. “How to Use Wix: An Easy Step-by-Step Guide (2020).” Website Builder

Expert, 1 June 2020,

www.websitebuilderexpert.com/website-builders/wix/how-to-use-wix/​.

Touitou, Margot. “How to Make a Website: GUide for Creating a Website in 2020.” How

to-Wix.com, 12 Jan. 2020, ​www.wix.com/how-to/make-a-website​.

https://xd.adobe.com/ideas/principles/web-design/web-page-design/
http://www.websitebuilderexpert.com/website-builders/wix/how-to-use-wix/

A1 27

Appendix

Addresses Content Manager :

A1 28

ContactForm Content Manager :

A1 29

Coupons Content Manager :

A1 30

Badges Content Manager :

A1 31

PrivateMembersArea Content Manager :

A1 32

Products Content Manager :

A1 33

Code for the home page :

import​ wixWindow ​from​ ​'wix-window'​;

import​ {local} ​from​ ​'wix-storage'​;

import​ {autocomplete} ​from​ ​'backend/gapi'​;

import​ {details} ​from​ ​'backend/gapi'​;

import​ {reverse} ​from​ ​'backend/gapi'​;

let​ lastQueryTime = ​new​ Date();

$w.onReady(​function​ () {

 ​// handle each suggestion repeater item

 $w(​"#repeater1"​).onItemReady(($w, itemData, index) => {

 ​const​ text1 = $w(​"#text26"​);

 text1.text = itemData.text1;

 ​const​ text2 = $w(​"#text27"​);

 text2.text = itemData.text2;

 text2.hide();

 });

 $w(​"#repeater1"​).collapse(); ​// hidden on page load

 ​// retrieve saved location (if exists) from local storage

 ​let​ id = local.getItem(​"place_id"​);

 ​if​(id === undefined || id === ​null​ || id.length === ​0​) {

 ​// if no location saved, find the IP-based geographic location

A1 34

 geoloc();

 }

 ​else​ {

 ​// if a location was saved in local storage, get the details

 set_details(id);

 }

 $w(​'#input4'​).onKeyPress((event) => {

 ​if​(event.key === ​"Enter"​) {

 local.setItem(​"address"​, event.target.value); ​//stores the entered user address in their

cookies

 ​return​;

 }

 input4_keyPress(event,$w);

 });

});

function​ set_details(val) {

 details(val).then(​function​(resp) {

 ​// find the city (locality) and country of the location

 ​let​ place = resp.result;

 ​var​ filtered_array = place.address_components.filter(​function​(address_component){

 ​return​ address_component.types.includes(​"country"​);

A1 35

 });

 ​var​ country = filtered_array.length ? filtered_array[​0​].long_name: ​""​;

 filtered_array = place.address_components.filter(​function​(address_component){

 ​return​ address_component.types.includes(​"locality"​);

 });

 ​var​ locality = filtered_array.length ? filtered_array[​0​].long_name: ​""​;

 console.log(​"details: "​ + locality);

 ​let​ name = place.formatted_address;

 ​let​ id = place.place_id;

 ​let​ utc = place.utc_offset;

 ​let​ lat = place.geometry.location.lat;

 ​let​ lng = place.geometry.location.lng;

 ​// save the details of the location with wix-storage

 local.setItem(​"place_city"​, name);

 local.setItem(​"place_lat"​, lat);

 local.setItem(​"place_lng"​, lng);

 local.setItem(​"place_utc"​, utc);

 local.setItem(​"place_id"​, id);

 $w(​"#input4"​).value = name; ​// set input field to location

A1 36

 ​// array of location detail items for the repeater

 ​let​ detailsList =

 [

 {

 ​"_id"​: ​"1"​,

 ​"text3"​: ​"place name"​,

 ​"text4"​: name

 },

 {

 ​"_id"​: ​"2"​,

 ​"text3"​: ​"latitude"​,

 ​"text4"​: ​""​ + lat

 },

 {

 ​"_id"​: ​"3"​,

 ​"text3"​: ​"longitude"​,

 ​"text4"​: ​""​ + lng

 },

 {

 ​"_id"​: ​"4"​,

 ​"text3"​: ​"utc"​,

 ​"text4"​: ​""​ + utc

A1 37

 },

 {

 ​"_id"​: ​"5"​,

 ​"text3"​: ​"place id"​,

 ​"text4"​: id

 }

];

 });

}

export​ ​function​ geoloc() {

 wixWindow.getCurrentGeolocation()

 .then((obj) => {

 ​let​ lat = obj.coords.latitude;

 ​let​ lng = obj.coords.longitude;

 reverse(lat, lng).then(​function​(resp) {

 ​let​ status = resp.status;

 ​// removed the pittsburg example

 ​let​ results = resp.results;

 ​var​ country = ​null​, city = ​null​, place_id = ​null​;

 ​var​ c, lc, component;

 ​for​ (​var​ r = ​0​, rl = results.length; r < rl; r += ​1​) {

A1 38

 ​let​ result = results[r];

 ​// look for city (locality) and country

 ​if​ (!city && result.types[​0​] === ​'locality'​) {

 ​for​ (c = ​0​, lc = result.address_components.length; c < lc; c += ​1​) {

 component = result.address_components[c];

 ​if​ (component.types[​0​] === ​'locality'​) {

 city = component.long_name;

 ​continue​;

 }

 ​if​ (component.types[​0​] === ​'country'​) {

 country = component.long_name;

 ​if​(city && country)

 ​break​;

 }

 }

 }

 ​else​ {

 ​continue​;

 }

 ​if​ (city && country) {

 place_id = result.place_id;

 ​// set_details(place_id);

A1 39

 ​break​;

 }

 }

 });

})

 .​catch​((error) => {

 ​let​ errorMsg = error;

 console.log(errorMsg);

 });

}

function​ input4_keyPress(event, $w1) {

 ​let​ current = ​new​ Date();

 ​if​((current - lastQueryTime) >= ​3000​) { ​//change the 3000 to change number of milliseconds

 lastQueryTime = current; ​// timer

 }

 ​else​ {

 ​return​;

 }

 setTimeout(() => {

 ​// use the current value to get a list of location suggestions

 ​// we call the autocomplete() web module from the backend

A1 40

 ​let​ val = event.target.value;

 ​if​(val.length === ​0​)

 ​return​; ​// ignore if empty

 autocomplete(val).then(​function​ (resp) {

 ​// create an array of suggestions for the repeater

 ​let​ predictions = resp.predictions;

 ​let​ suggestions = [];

 ​let​ i = ​0​;

 predictions.forEach(​function​ (prediction) {

 ​let​ item = { ​"_id"​: i.toString(), ​"text1"​: prediction.description, ​"text2"​:

prediction.place_id };

 i++;

 suggestions.push(item);

 });

 console.log(suggestions);

 $w(​"#repeater1"​).data = suggestions; ​// add the suggestions to the repeater

 $w(​"#repeater1"​).expand(); ​// we have data so we can expand the repeater

 });

 }, ​10​);

}

A1 41

Code for the tracking page:

import​ wixWindow ​from​ ​'wix-window'​;

import​ {local} ​from​ ​'wix-storage'​;

import​ {details} ​from​ ​'backend/gapi'​;

import​ {distance} ​from​ ​'backend/gapi'​;

$w.onReady(​function​ () {

 $w(​"placeholder"​).onReady(() => { ​//replace placeholder by place_id so that #googleMaps1

can use it as the location

 ​let​ currentItem = local.getItem(​"placeholder"​); ​//replace placeholder by place_id so that

#googleMaps1 can use it as the location

 $w(​"#googleMaps1"​).location = {

 ​"latitude"​: currentItem.latitude,

 ​"longitude"​: currentItem.longitude,

 ​"description"​: currentItem.title,

 };

 });

});

$w.onReady(​function​ () {

 distance().then(​function​(resp) {

 console.log(resp);

A1 42

 });

});

Code for the back-end:

import​ {fetch} ​from​ ​'wix-fetch'​;

const​ key = ​"AIzaSyDAULCaG_C1zfK2-rvmz7lMHLggTybvKGI"​;

const​ apart1 = ​"https://maps.googleapis.com/maps/api/place/autocomplete/json?"​;

const​ apart2 = ​"&types=address&components=country:ca&key="​;

export​ ​function​ autocomplete(string) {

 ​let​ input = ​"input="​ + string;

 ​let​ url = apart1 + input + apart2 + key;

 ​return​ fetch (url, {method: ​'get'​}).then((httpResponse) => {

 ​if​ (httpResponse.ok) {

 ​return​ httpResponse.json();

 }

 });

}

const​ dpart1 = ​"https://maps.googleapis.com/maps/api/place/details/json?"​;

A1 43

const​ dpart2 = ​"&key="​;

export​ ​function​ details(id) {

 ​let​ placeid = ​"placeid="​ + id;

 ​let​ url = dpart1 + placeid + dpart2 + key;

 ​return​ fetch (url, {method: ​'get'​}).then((httpResponse) => {

 ​if​ (httpResponse.ok) {

 ​return​ httpResponse.json();

 }

 });

}

const​ rpart1 = ​"https://maps.googleapis.com/maps/api/geocode/json?"​;

const​ rpart2 = ​"&key="​;

export​ ​function​ reverse(lat, lng) {

 ​let​ latlng = ​"latlng="​ + lat + ​","​ + lng;

 ​let​ url = rpart1 + latlng + rpart2 + key;

 ​return​ fetch (url, {method: ​'get'​}).then((httpResponse) => {

 ​if​ (httpResponse.ok) {

 ​return​ httpResponse.json();

 }

 });

}

A1 44

export​ ​function​ distance() { ​// uses google's distance matrix api to find the distance between 2

set points

 ​const​ url =

"https://maps.googleapis.com/maps/api/distancematrix/json?origins=Vancouver+BC|Seattle&des

tinations=San+Francisco|Victoria+BC&"​ + key;

 ​return​ fetch (url, {method: ​'get'​}).then((httpResponse) => {

 ​if​ (httpResponse.ok) {

 console.log(​"OK"​);

 ​return​ httpResponse.json();

 }

 })

}

