GNG5140

Design Project User and Product Manual

Cycling Facility Surface Smoothness Logger

Submitted by:
SmoothRiders
Jose Sarmiento Tejada, 300363449
Jiaging Zheng, 300441923

Sai Aditya Bommakanti, 300279989

10 December 2024

University of Ottawa

Table of Contents

TADIE OF CONTENES ... bbbttt b b b I
TS o) T TN =TT R TR iv
LISt OF TADIES ...t b bbbttt b et bbb %
List of ACrONYMS aNd GIOSSAIYccviieiiieiiiteie e Vi
R 01 oo (3 Tox o] OSSPSR PTP PR TRPRORPIN 1
2 OVEIVIBW ...tttk b bbbt b b s e et e bbbt e b e bt e s e b e b et bbb n s 2
2.1 Y SIBIM bbbt 3
2.2 CAULIONS & WAIMINGS ...c.viiiiiitieieeiieiei ettt bbbttt ab et nbe s 6
2.2.1 USBI ettt 6
2.2.2 DBVEIOPET ...ttt 6

3 GEIHING STAITE ...ttt 8
3.1 System Organization & NAVIGATIONccccoiiiiiiiiieiee e 8

4 USING ThE SYSTEM .. bbbttt ee e 9
4.1 Menu Item — Menu BUTONooiiie e 9
411 Menu ltem — Read Backend File ... 9
4.1.2 Menu Item — PIOt GPS HISIOIYooiiiiiiiieieieee e 9
4.1.3 Menu ITemM — QUIT APP .ottt bbb 10

4.2 Menu Item — Upload BULTON.........coiiiiiiiieiesee e 10
4.3 TEXEVIBW BOX ..iiiiiiiiiiiieie ittt bbbttt bbb 10
A4 MAP EIBMENTo.oiiiiiiicee bbbt 10

5 TroubleshOoting & SUPPOIToiuiiiiiiieee e 11
5.1 Error Messages Or BENAVIOISccvoiiiiiiieiieseee e 11
5.2 Special Considerations and MaiNtENANCE............cueuiiriirierere s 13
5.3 SUPPOIT e 13

6 Product DOCUMENTATIONoiuieiieiieiieesieeie ettt sre et e nneennas 14
6.1 Planned System ArChITECTUIEcviiiieee s 17
6.2 Bill of Materials (BOM).......oiiiiiieiiieiese e 17
6.3 TesStiNg & VaAlIUALIONccoiiiiiiiieee e 18

6.3.1 PerfOrmMed V&Vooioiiiie ettt 21

7 Conclusions and Recommendations for Future Work ... 26
0 A =TT S - U =T PR 26
A o 1 10 0 1o IRV o] o OSSR 26

8 BIDHOGIAPNY ... 28

N o 1]) RS 30

List of Figures

Figure 1: High-Level Architecture of the SYStem..........ccoiiiiiiiiii e 3
Figure 2: The Hardware PrOtOTYPEooiiiiiieieieieste sttt 3
Figure 3: The SOTtWAre PrOtOLYPE.oiiiiiiiieieie et 4
Figure 4: Flowchart of the Mobile APPlICALION ... 5
Figure 5: Mobile APP MEeNU OPLIONS.......ccuiiiiiiiieieiesi e 8
Figure 6: Menu Options in the APPHICALION ..ot 9
Figure 7: GPS LOCALION IMAIKETScouiiiiiiiiiieieieie ittt 10
Figure 8: Example 0f @ LOCAtION EITOFcoiiiiiiiiii e 11
Figure 9: Example of a Non-Implementation Error............ccooveeiieninciesiseeeeee e 11

Figure 10: An Example Wherein a Click on any other Part of the App Leads to the
NOTITICAION GOING AWAYeeveieieteite ittt b b bbbt e et e e e e e bt sbeene e 12
Figure 11: Designed System Architecture of the Complete Prototype.........cccooevvienencieiennnn 17

Figure 12: Example of adding functional and non-functional requirements to the system

100 (=] OSSPSR PP PR PR 21
Figure 13: Example of requirement captured in the model ... 22
Figure 14: Verification performed in the architeCture ..o 22

List of Tables

LI Lo Lo o 0])Y 1 TSP vi
Table 2: Solution CompariSON TabIEcviiiiie s 14
Table 3: The Planned Stages of Implementationcocooviiiiiieiineieseeeee s 16
Table 4: Bill OFf MatErIalS.......ccvoiiiieiice e 18
Table 5: Verification and Validation Srategyccooeririiiiiiieie e 21
Table 6: VerifiCation FESUILS..........oiiiiiee et 25
Table 7: RETEIENCE RESOUITES.....c..oviiiitiitiiiieti ettt bbbttt e bbb 30

List of Acronyms and Glossary

Acronym Definition
UPM User and Product Manual
API Application Programming Interface
Pl Personally Identifiable Information
Ul User Interface
FSR Functional System Requirement
NFSR Non-Functional System Requirement

Table 1: Acronyms

Vi

1 Introduction

This User and Product Manual (UPM) provides the information necessary for bikers and authorities
of the municipalities of Ontario to effectively use the surface mapper solution and for prototype
documentation. The solution and all related documentation are deliverables of the graduate level
course GNG 5140 Engineering Design, Fall 2024 at the University of Ottawa. This document
provides enough information for the use, maintenance, and improvement of the product as it

presently exists.

Dedicated bike paths are a healthy and environmentally friendly alternative to fossil fuel powered
vehicles. Several people use these paths daily for various reasons at different hours of the day.
However, separated protected cycling facilities (dedicated bike lanes) may not be utilized by cyclists
if the quality of construction is poor; specifically, the smoothness of the road. Poor smoothness
forces the cyclists to use adjacent roadways leading to mixed traffic. In some cases, the poor quality
of the bike path may even force the user to use other modes of transportation. Best practices for
testing surface smoothness on cycling facilities need to be identified to maintain good quality
cycling infrastructure. This project focused on developing a method to map the smoothness of a
surface to provide reliable bicycle infrastructure data to both the cyclists and municipalities of

Ontario.

The various sections in this document provide information to the reader on the background of the
problem and solution, cautions, setup, using the system, troubleshooting, support and project
documentation. The project report and all related files are maintained in a repository on MakerRepo.

The Appendix contains more information on this.

2 Overview

The problem addressed by the project is two-fold. One is the problem that municipal authorities in
Ontario face in evaluating the quality of bikeways and the other is the discomfort that bikers face
when a biking surface is of bad quality. At the time of working on the solution, the team was unable
to find standard testing methods and quality metrics to assess the quality — surface smoothness and
anomalies especially — of a constructed biking surface. The solution tackles both the problems and
provides additional, indirect benefits such as enhanced routing options in maps applications for
bikers and so on.

The user in this case can either be a biker consenting to using their mobile phone for recording

acceleration and GPS data, or any official from a municipality in Ontario collecting road test data.

The solution is novel, in the sense that there exists no solution resembling the system configuration
such as this solution. While existing literature on the topic provides good quality information, it is
research data, and no practical application has been identified by the team. In other words, there is
no existing product that addresses the problem. However, the research data was taken into
consideration by the team to produce the solution. The Bibliography section contains all references,

including those from the project report.

2.1 System

The following images of the prototype give a brief idea into the design of the system.

@ Real-Time Database

Data

Iyt
‘ T © | tegrity/security

L Cloud (Backend/Server)

D8 [PHY] Mounting

] Distance data
]
Bicyde & wicrocontroller Distance Sensor - LIDAR ete.
— | g Capre distance
PeB (PHY] Jumper cdble data
Data
o © eception
& Mobile App Transmit distance
@ da
ata
A Gyrascope Flat Mount
Plate
© Rel(urd‘Ele © SEnddED mot ?l Cie L Modht
motional data ata ® Processing
W Camera Sensor
G Accelerometer @ Coptore visual
Data data
Record 3D send3pmot | [|| EEEEEEEEEEEEEE | [e
motional data data L
Transmit visual
Ll R
DA(LE] Sensor data
Dl (P)
Send 3D pos. Dol [PHY] Mounting
"

Figure 1: High-Level Architecture of the System

Figure 2: The Hardware Prototype

QX ° T 496%8

UPLOAD

Current location: 45.4171885, -75.6911142

BD Acc.: 0.005015239, -0.012896523, 0.085840225
Current acceleration vector length: 0.08694836
Device is flat

c

o

-
ool
o

Read backend file

Plot GPS history

Quit app

Pesedence

OX Q= 4+96%8

UPLOAD

5.6911142
E-4,0.06441975
th: 0.066893704

.
o
L7

QX Q5,4+ 96%8

UPLOAD

Current location: 45.4172043, -75.6911309

BD Acc.: 0.019456, -0.0072952136, 0.042396545
Current acceleration vector length: 0.04721465
Device is not flat

yotation =111

.(-’o«\e'\ e

~38] ~

The Attache

¥?

East India Le Qual

mpary DOY™

The Athlone

Figure 3: The Software Prototype

As can be seen from the pictures, the prototype (solution) is two-pronged; it consists of a hardware

setup and a software setup. The complete solution has the following breakup of components.

e Hardware setup — A mobile phone (with accelerometer and GPS sensors), a microcontroller,

ultrasound sensors, camera sensor

e Software setup — Android mobile application and microcontroller code

The system was designed to be modular. Even without the dedicated hardware — external sensors

and microcontroller — the system can still function and provide the required information.

The prototype makes several assumptions, two of the most important ones being that the user has
an Android mobile phone on them and that their bike has space for a back-plate or basket to snap
on to. Additionally, the user must provide their consent to record their positional and motional
sensor readings for the solution to work. The following software (logical) flowchart provides more

information on the basic functionality of the prototype.

Record acceleration

Record position

D
-

No

Yes

Yes

Upload data to cloud
Display data on app

|

Google Cloud (Firebase)

Figure 4: Flowchart of the Mobile Application

o1

2.2 Cautions & Warnings

2.2.1 User

The user must provide the required permissions in the application and understand that by using the
solution they consent to their positional and motional data, including potentially personally
identifiable information (PII) that sometimes may be in the form of an image, being recorded and

stored on a server that may or may not be owned and maintained by the developer or the client.
2.2.2 Developer

The cloud service used for this prototype is Google Cloud (through Google Firebase). While it
provides limited free usage, the service required the team to input their credit card details during
setup. As a result, the code and all related information included in the MakerRepo files of this
project may not work until a new cloud service is created/selected and appropriately integrated with

the software.

The team recommends Google Firebase since the prototype was based on it and uses some
Application Programming Interfaces (APIs) provided by them; this would require the least amount

of edits in the code files.

3 Getting started

The following steps cover the general setup and operational information of the prototype. Not all
steps need to be performed every time the solution is used, but it is recommended to verify every

step before every use of the system.

These steps cover the end-to-end operational setup of the solution. If the user wishes to not use
certain parts of the solution, for example, the hardware, they can skip those steps. The modularity

of the solution is in the hands of the user.

1. Ensure that the mobile app is installed.
2. Ensure that all permissions requested by the application are provided.
3. Open any maps application on the phone at least once and verify that the GPS sensor is
working.
Note: This is needed due to the way the app is coded. A power-saving location APl was
used which unfortunately does not “force” the phone to fetch new location data. As a result,
the GPS sensor needs to be “woken up” by other means before the solution can take the
required control over the sensor.
4. Ensure that the hardware is secured on a flat surface with the following orientation of the
Sensors.
a. Two ultrasound sensors covering the lateral plane — one facing left and the other
facing right.
b. A camera facing the road surface. (Another camera facing sideways and/or upwards
may be used).
5. Ensure that the flat surface is properly mounted on to the bike either at the front or at the
back.
6. Ensure that the mobile phone is laid reasonably flat — the same surface used to mount the

sensors can be utilized to hold the mobile phone.

7. Run the mobile application and power on the microcontroller.

The user does not need to do anything else other than go about their usual activities. They are only
required to close the mobile application and switch off the microcontroller once they reach their

destination or wish to stop using the solution.

Note: The implementation of the solution is not complete. The project report explains further and
contains the complete strategy and subsequent plans. The hardware and software integration —
microcontroller and mobile app — is not complete. As a result, the bulk of this user manual focuses
on the mobile application. Any work performed on the actual system warrants a respective update

of this document by the development team.

3.1 System Organization & Navigation

The following image captures the menu elements of the application. The terms are self explanatory,

and the steps above cover all that the user needs to do to use this version of the prototype.

UPLOAD UPLOAD

UPLOAD

Current location: 45.4171885, -75.6911142 Read Backend i 56911142 Current location: 45.4172043, -75.6911309
D Acc.: 0.005015239, -0.012896523, 0.085840225 gacackena.Ne E-4,0.06441975 BD Acc.: 0.019456,-0.0072952136, 0.042396545
Current acceleration vector length: 0.08694836 th: 0.066893704 urrent acceleration vector length: 0.04721465
Device s flat Device is not flat

Plot GPS history tidodld

B
of
Quit app <

The Attache

Ind;

Le Quai
y DoY)
W

o
]

7 " - g o o
e 24 9 The Athlone Lo

Figure 5: Mobile App Menu Options

4 Using the System

The software application is described in detail in this section. For the most part, no human
intervention is needed, as the steps in the previous section highlight. The application only has one
screen (activity).

4.1 Menu Item — Menu Button

The menu button is the button on the top left colored in purple. This button acts as the main menu

button for the application.

0X 9= 496%8 0 X QE 4 96%8
UPLOAD UPLOAD

Current location: 45.4171885, -75.6911142 Read backend fil 56911142
BD Acc.: 0.005015239, -0.012896523, 0.085840225 eac backend e E-4,0.06441975
Current acceleration vector length: 0.08694836 th: 0.066893704
Pevice s flat Plot GPS history

o I

Quit app
1 % £

Figure 6: Menu Options in the Application

The following sub-functions are nested in the dropdown menu option.

4.1.1 Menu ltem — Read Backend File

This feature has not yet been implemented.

Developer Note: The raw data can be retrieved from the server, but no Ul element has been

developed to present meaningful information to the user.

4.1.2 Menu Item — Plot GPS History

This button fetches all the GPS coordinates available in the file on the server and adds markers on

the map in the application.

36

¥t
E Quai

dia Le
\,D()%

Figure 7: GPS Location Markers

4.1.3 Menu Item — Quit App

This button quits the application and returns the user to the screen that was open before the

application was launched. The connection to the server is severed and no data is recorded.

4.2 Menu Item — Upload Button

The upload button uploads all recorded data — in the current session — to the server.

Developer Note: This overwrites all previous data in the existing file.

4.3 Text View Box

The text box is used to indicate the current readings to the user. It shows the current GPS coordinates

and acceleration vector lengths.

4.4 Map Element

The interactive map shows the GPS location markers and allows the user to interact with it. The

map is provided by OpenStreetMap and does not require a license to be purchased.

Developer Note: If the application is made commercial, OpenStreetMap regulations need to be

thoroughly reviewed and abided by.

10

5 Troubleshooting & Support

The application software was designed to never let the application crash on the user. This was done
by employing error handling techniques throughout the code. As a result, even in the event of a
functional failure, the app simply displays a message to the user saying that the task could not be

completed. The following sections provide an example of this behaviour.

5.1 Error Messages or Behaviors

The error messages in the application are in the form of Android toast messages — floating text
typically at the bottom of the screen. The following images are two of the most common errors that

may occur while using the application due to missing implementation or missing permissions.

Montpetit
Hall

@ null location returned by OS

ol
<
B, ' o

[l O <

Figure 8: Example of a Location Error

Q The Ul to read raw data will be
~ implemented in the next version

I

1 O <

Figure 9: Example of a Non-Implementation Error

11

Other errors such as file not existing, file not able to be created, connection issues with the server

and so on are handled but are not displayed to the user. These errors are completely abstracted away

from the user. The only indication that the user will get of such errors is the long wait time, which

the user can easily bypass by clicking on any part of the screen. An example is included below.

Uploading data

Please wait until this dialog closes.

Successful closure indicates
successful upload of data.

@& Triggered upload.

Uploading data

Please wait until this dialog closes.
Successful closure indicates
successful upload of data.

@ null location returned by OS

Figure 10: An Example Wherein a Click on any other Part of the App Leads to the Notification Going Away

12

5.2 Special Considerations and Maintenance

The user does not need to worry about any special considerations or application maintenance.
Application updates may be made available by the developer at which point the user may wish to

update the application.

Developer Note: The hardware part of the prototype is abstracted away from this manual due to no

integration between the mobile application and the microcontroller. It should be a part of the next

version of the prototype.

5.3 Support

All application support is conducted via email. Given the nature of the solution — a software
application that poses no immediate threat to any life or property — there exists no emergency
assistance. That being said, the team has 24x7 access to all the listed emails and will respond as

soon as possible to the user.

For any kind of support or problem reporting, the user is requested to contact either one of the

people from the development team included below.

1. Sai Aditya Bommakanti — sbomm094@uottawa.ca

2. Jiaging Zheng — jzhen028@uottawa.ca

3. Jose Sarmiento Tejada — jsarm054@uottawa.ca

Important Note: For any (data) security incident or high severity issue that directly impacts the
user, please make your subject line “HIGH SEVERITY”.

13

mailto:sbomm094@uottawa.ca
mailto:jzhen028@uottawa.ca
mailto:jsarm054@uottawa.ca

6 Product Documentation

The implementation of the prototype as it exists at the time of writing this report is included below.

The table below contains reasoning behind the selection of the hybrid solution strategy. This

strategy is compared against a pure software (mobile application only) strategy and a state-of-the-

art hardware solution strategy (dedicated sensors around the bike). Tick marks indicate the

magnitude of advantage and crosses indicate the magnitude of disadvantage, both comparative.

Concept 1: State-of-the-Art

Concept 2: Mobile

Solution: Mobile App +

T Sensors Phone App Sensors
High Accuracy * Vv XX vV
Reliable Data * VvV XX vv
Cost-Efficiency * X VvV vV
Compact/

Portable XXX VY v
Development

Time * XX Vv v
Modularity vvyv XX VvV
Ease of Use XX vV vv
User Experience X VvV vV
Size Constraints XXX VvV X
Cost * XXX VvV X
Power Source

Requirements XXX VY X
Data Privacy

Concerns Abd XXX X
Calibration

Complexity XXX vy XX
Development

Complexity * XX v v
Weight XXX VvV X
Platform

Limitations VY XXX v

Table 2: Solution Comparison Table

14

The solution was designed to be implemented over six stages, of which only four (stages 1 to 4) are
done at the time of writing this manual. This is the reason why the microcontroller part of the
solution is abstracted away from this user manual. The following table includes all six stages

including the required equipment.

Stage Elaboration

Stage 1 | An Android to exploit various standard sensors available on most smartphones. The

Android platform was chosen because,

a. Itis open source.
b. Android has a global market share of 71.85%.
c. An android phone is relatively inexpensive and provides more developer

options out of the box.
The following sensors are tested/utilized.

Accelerometer (linear acceleration, 3 axes) — m/s?
Gyroscope (3 axes) —rad/s

Rotation Vector — unitless values along 3 axes

A w e

GPS — unitless coordinates along 3 axes

Google Firebase was selected to provide a backend to the mobile application.
Firebase was chosen because it easily integrates with Android code and provides a

limited free-tier subscription model that is easy to setup.

Stage 2 | The team will either identify a mathematical model on which to base the acquired

data or develop a simple model or logic to derive meaningful information.

15

Stage 3 | The following sensors were identified for version 1 of the application of the strategy.
1. Distance sensors — LiDAR and/or ultrasound.
2. Visual sensors — Camera.
3. Microcontroller — Arduino or Raspberry Pi.
Stage 4 | Raspberry Pi Python code will be written to power and control the identified sensors.
Stage 5 | Interfacing the microcontroller and the mobile app may require additional sensor(s)
such as Bluetooth or GSM.
Stage 6 | Weatherproof Housing for the microcontroller and sensors would be designed for fit

and 3D-printed. The housing would also include a self-sufficient power source such
as a 12V rechargeable lead acid DC battery or equivalent (USB powered power
bank).

Table 3: The Planned Stages of Implementation

16

6.1 Planned System Architecture

A model-based system engineering approach was selected for the project. Additionally, the design

principle of Keep It Simple, Silly (KISS) was strictly followed.

@ Real-Time Database

@ Store ‘ © Retrieve ‘

m!

Data
Integrity/Security

‘ @ Global Analytics ‘ @

Cloud (Backend/Server) ‘

!

IR [LE] Server communication

Server communication
Defl [PHY] Mounting

{T o [LE] Distance data 1
Mobile Phone Bicycle Microcontroller Distance Sensor - LIDAR etc.
= Capture distance
User interface
P (PHY) Jumper cqble ¢ deta
Data
o N) reception
Mobile App @ Transmit distance
data
Gyroscope Flat Mount
Plate
D= iy Mot|nt
‘ Re(.md D Send 3D mot. O —1
motional data data @ Processing
4L Camera Sensor
40 Accelerometer @ Capture visual
D data
Record 3D Send 3D mot. @ transar:?\ssiu
motional data data n Dl [LE] Visual data
- @ Transmit visual
data
DA (LE) Sensor data
& ees Do PHY] Jumper cable
Record 3D @ Send 30 pos. D=l [PHY] Mounting
pasitional data data

Figure 11: Designed System Architecture of the Complete Prototype

6.2 Bill of Materials (BOM)

The table below includes the bill of materials for the existing prototype.

Item Qty. | Price (CAD)

Link/Remarks

Raspberry Pi 4

Model BacB |+ |® 90.00

https://makerstore.ca/shop/ols/products/raspberry-

pi-4-model-b-4gb

17

FNKO0056

2 1 13.99 | https://a.co/d/gowOgW7
camera
3 | Power bank 1 19.55 | https://a.co/d/gsBaxO3
https://makerstore.ca/shop/ols/products/jumper-
4 Jumper Cables 20 1.00 cables-pack-of-10/v/C004-20-FF
HC-SR04 _
5 | Ultrasonic 1 $ 200 https.//makerstore.ca/shop/ols/products/hc—sr04—
ultrasonic-sensor
Sensor
External Estimated. Not included in the final product but
needed for testing. Most bikes may already have a
6 | structure + 1 3 20.00 .
: flat plate-like attachment at the back, or a basket
Bicycle holder .
in the front.
Total (Before
Taxes) $ 146.54
Total $ 164.12 | An estimate with +/-10% tolerance.

6.3 Testing & Validation

Table 4: Bill of Materials

The plan for verification of the solution, mirroring the implementation strategy, was divided into

six stages. Every verification stage is essentially a (series of) test(s) of the solution stage. The table

below captures the proposed verification and validation (V&V) strategy.

Note: Each step of the V&V plan may have sub-tests that have been abstracted away from the table.

Similarly, FSR (Functional

System Requirement) and NFSR (Non-Functional

System

Requirement) are the requirements derived by the team from the user needs which are not included

in this document.

Implementation Stage

Verification Plan

Validation Plan

Stage 1

Android mobile app and

sensor data.

Stage 1

Test against NFSR01, FSR01
and FSR02.

1. Code syntax and logic

checks.

18

https://a.co/d/gowOgW7
https://a.co/d/gsBaxO3
https://makerstore.ca/shop/ols/products/hc-sr04-ultrasonic-sensor
https://makerstore.ca/shop/ols/products/hc-sr04-ultrasonic-sensor

2. Check

3. (Re)define

results on both
emulator and a physical
device.

metrics,
baselines or thresholds and
results

check obtained

against them.

4. Check if values are being

stored either locally or to a

server, as the team
intended.
Stage 2 Stage 2 Test against FSROL.

Data modelling.

2. Check if

1. Check the resolution of the

modelled information.
anomalies

register clearly in the data.

Stage 3

Identification and sourcing of
Sensors and

microcontroller(s).

2. Check

Stage 3

1. Check if identified sensors

match the proposed system
architecture.
if the

equipment is within the

required

proposed/allocated budget.

Test against FSRO3.

19

3. Check if the acquired

sensors are of good
quality.
Stage 4 Stage 4 Test against FSRO03.
Code for sensors and |1. Essentially the same as the
microcontroller. steps for stage 1.
2. Testall sensors at the same
time (real-time test).
3. Explore the possibility of
uploading values to a
global location that can
ideally be accessed by the
mobile app.
Stage 5 Stage 5 Test against FSR03 and
FSRO05.
Interfacing the | 1. Check if the mobile app
microcontroller ~ with the can turn on and off the
mobile app. enable signals of the
microcontroller — logical.
Stage 6 Stage 6 Test against FSR04.

Housing for the equipment.

Housing the sensors

microcontroller with

independent power source.

and

an

1. Check size constraints.
2. Check

factors.

environmental

20

Table 5: Verification and Validation Strategy

6.3.1 Performed V&V

Staying true to both the identified design principle of Keep It Simple, Silly (KISS) and the adopted
(model-based) systems engineering methodology of ARCADIA, most of the verification was
performed in the system architecture of the system model in Capella. The requirements were
captured in the system model and tagged to solution architecture elements, providing clear

traceability and verification.

o —TT
14 surfacesmaoothne Add Capella Element > = Property Value Pkg
~ | surfacesmoothne New Diagram / Table... > & Requirements Pkg
~ &3 sur'facesm-ootl Cony As , {0 Constraint
B Operationz _, Cut CtrisX System Functional Interface Requirement
B3 System An B Copy Cirl+C System Functional Requirement
~ B3 Logical Arc Paste Ctri+V System Non Functional Interface Requirement
& Logical % Delete Delete System Non Functional Requirement
~ & Require T — Ctrl+PageUp B System User Requirement
v & FSRE 13, Sort Content - = Boolean Property Value
FS Sort Selection E Enumeration Property Type
B Fe Move Down Ctrl+PageDown | =8 Enumeration Property Value
FE : - z = Float Property Value
= Capabil ~ SZS? Do Command E_ttrliz = Integer Property Value
& Interfac e - El Property Value Group h
& Data = Show In Search = String Property Value
< = Show In Properties dialog T T DT O ST L VT WO T I VIS I g T A Ta e T
52 Outline 52 % Show in Semantic Browser F9
o &l Showin Diagram Editor F10
Thelr_e Is no active editor ti % Show Impact Analysis...
outline.
4 Send to Transfer View
EZ Send to Mass Editing View >
E2 Send to Mass Visualization View >
##4 Refresh All Sub Representations
#24 Remove Hidden Elements
[Validate Model
B REC/RPL >
™ Wizards >
H Allocation Management
Fragment...
& surfacesmoothness:suri Progress Monitoring >

Figure 12: Example of adding functional and non-functional requirements to the system model

21

~ 3 Logical Architecture
& Logical Functions
~ & Requirements
v & FSRO1
FSRO1.1
FSRO1.2
FSRO1.3

Figure 13: Example of requirement captured in the model

% surfacesmoothness & [LAB] Functional architecture B New Logical Functions - Requirements
FSRO1.1 FSRO1.2 FSRO1.3
2 Record 3D motional data X
0 Send 30 mot. data

@ Record 3D motional data X
& Send 3D mot. data
@ Record 3D positional data X

@ Send 3D pos. data
2 Data reception

& Processing

@ Data transmission

i Cantiire Aistancs Aata X

Figure 14: Verification performed in the architecture

The software code was also split into various functions; the Android code in written in Java was
coded using functions mirroring those captured in the system model. Every green box in the system
architecture view is a system function. At the lower levels, these system functions can be broken
down into domain-specific functions — for example, electrical, software, hydraulic and so on. This
breakdown has been abstracted out for this report, but the verification was performed using the
system level functions in the matrix style discussed above.

The verification matrix generated in this manner helped the team verify all items. The table below

indicates successful or unsuccessful verification of the item.

22

Note: The items in bold failed the verification test or are unverified at the time of submission of this

report. More information about these items is included at the end of the table.

Implementation Stage

Validation

Stage 1

Android mobile app and

sensor data.

3. (Re)define

Verification
Stage 1
1. Code syntax and logic
checks.
2. Check results on both

emulator and a physical
device.

metrics,
baselines or thresholds and
results

check obtained

against them. 1]

4. Check if values are being

stored either locally or to a

Test against NFSR01, FSR0O1
and FSRO2.

Data modelling.

2. Check if

1. Check the resolution of the

modelled information.
anomalies

register clearly in the data.

server, as the team
intended.
Stage 2 Stage 2 Test against FSROL.

Stage 3

Stage 3

Test against FSRO3.

23

Identification and sourcing of

1. Check if identified sensors

Sensors and match the proposed system
microcontroller(s). architecture.

2. Check if the required
equipment is within the
proposed/allocated budget.

[#2]

3. Check if the acquired
sensors are of good
quality.

Stage 4 Stage 4 Test against FSRO3.
Code for sensors and |1. Essentially the same as the
microcontroller. steps for stage 1.

2. Testall sensors at the same
time (real-time test).

3. Explore the possibility of
uploading values to a
global location that can
ideally be accessed by the
mobile app.

Stage 5 Stage 5 Test against FSR03 and
FSRO05.

Interfacing the |1. Check if the mobile app

microcontroller ~ with the can control the enable

mobile app.

24

signals of the

microcontroller.

independent power source.

factors. [

Stage 6 Stage 6 Test against FSR04.
Housing the sensors and |1. Check size constraints. 4]
microcontroller ~ with an |2. Check environmental

Remarks:

[#1]: Since all tests were conducted under laboratory conditions, this criterion could not be

verified in the real-world.

[#2]: Since not all stages were implemented, this criterion was not considered.
[#3]: Since stage 5 was not implemented, this check was skipped.

[#4]: Since stage 6 was not implemented, this check was skipped.

[#5]: Since stage 6 was not implemented, this check was skipped.

Table 6: Verification results

Under laboratory conditions, both indoors and outdoors, the validation of only stage 1, stage 2 and
stage 3 was performed. The validation test follows the plan outlined in the table above, and involves
alpha testing — testing by members of the team. Client validation has not been performed at the time
of the submission of this report.

25

7 Conclusions and Recommendations for Future Work

7.1 Lessons Learned

The team learned the following lessons worth mentioning while working on the project.

e Fix the problem statement (no ambiguity) before starting work on a solution or concept.

e There will always be something better than the current idea, product or concept but chasing
after those “optimum” alternatives leads one down a rabbit hole.

e Typically, the best advise to follow at any stage is to keep things as simple as possible unless
the business or use case demands otherwise; “reinvention of the wheel” is not necessary.

e Dedicate enough amount of time for research into existing literature or work performed in

the area.

7.2 Planned Work

The following system capabilities have been successfully implemented at the time of submission of

the project report.

e Continuously record and monitor acceleration values using a mobile phone application.

e Continuously — or at time intervals required by the use case — record GPS coordinates using
the mobile phone application.

e Identify anomalies using the acceleration values.

e Drop GPS markers on the Ul at regular intervals or at detection of anomalies.

e Continuously record distance measurement using the ultrasound sensor connected to the
Raspberry Pi.

e Record image on-demand using the camera sensor and Raspberry Pi.

At the time of submission of the prototype report, the following activities are pending. Due to

various reasons stemming from the constraint of lack of time and resources, the following activities

26

could not be performed in the duration of the course GNG 5140 for the fall 2024 semester. Future
work on this project, with the help of the information and resources included on MakerRepo, may

resume from the following activities.

e Make the Raspberry Pi “headless” — Remove dependency on the need for an external
display, mouse and keyboard.
o ldentified strategy — Include the project logic into a service that is called on boot.
e Detailed real-world testing — Verification and validation activities, plus user testing
e Implementation of stage 5 — Building an interface between the mobile application and
Raspberry Pi
o ldentified strategy — Use Google Firebase (same used for backend) and perform data
integration on the server or on client-side. This is an asynchronous activity and
should not affect the real-time collection of data on the side of the client.
e Implementation of stage 6 — Weatherproof housing for the sensors and microcontroller
including dedicated power.
e Political considerations — Bikeways in Ontario may be removed (at the time of writing this
report).

e Performing continuous improvement using the Kaizen cycle.

27

8 Bibliography

This bibliography is taken as-is from the project report document. The number indicated against

each entry is of no significance to the information contained within this user manual.

[1] Low, Pablo & Krisp, Jukka. (2024). Smoothing the Ride: A Surface Roughness-Centric
Approach to Bicycle Routing. AGILE: GlScience Series. 5. 1-6. 10.5194/agile-giss-5-39-2024.

[2] Anna Niska, Leif Sjogren, Peter Andrén, Christian Weber, Tineke de Jong, Aslak Fyhri,
Determination of riding comfort on cycleways using a smartphone application, Journal of Traffic
and Transportation Engineering (English Edition), Volume 11, Issue 4, 2024, Pages 747-760, ISSN
2095-7564, https://doi.org/10.1016/j.jtte.2023.05.010.

[3] Toljic, Marko & Brezina, Tadej & Emberger, Gunter. (2019). The influence of surface roughness
on cyclists’ velocity choices. Municipal Engineer. 174. 2-13. 10.1680/jmuen.18.00058.

[4] Zang K, Shen J, Huang H, Wan M, Shi J. Assessing and Mapping of Road Surface Roughness
based on GPS and Accelerometer Sensors on Bicycle-Mounted Smartphones. Sensors. 2018;
18(3):914. https://doi.org/10.3390/s18030914.

[5] Shields M, Connor Gorber S, Janssen I, Tremblay MS (September 2011). "Bias in self-reported
estimates of obesity in Canadian health surveys: an update on correction equations for adults”
(PDF). Health Reports. 22 (3): 35-45.

[6] EXA Tools (2016) Vibration meter - apps on Google Play, Google. Available at:

https://play.google.com/store/apps/details?id=com.exatools.vibrometer .

[7] Ontario Ministry of Transportation. (2013). Ontario Traffic Manual, Book 18: Cycling
Facilities.

28

https://doi.org/10.1016/j.jtte.2023.05.010
https://doi.org/10.3390/s18030914
https://play.google.com/store/apps/details?id=com.exatools.vibrometer

[8] Random Nerd Tutorials (2013) Complete Guide for Ultrasonic Sensor HC-SR04. Available at:

https://randomnerdtutorials.com/complete-quide-for-ultrasonic-sensor-hc-sr04/ .

[9] Dewalt. (n.d.) 100 ft. Laser Distance Measurer. Available at:
https://www.dewalt.com/product/dwht77100/100-ft-laser-distance-measurer.

[10] Bosch. (n.d.) Blaze 100ft Red Beam Laser Measure. Available at:
https://www.northerntool.com/products/bosch-blaze-100ft-red-beam-laser-measure-max-

measuring-distance-100-ft-accuracy-0-0625-in-model-glm100-23-5776799#hotbar-description.

[11] Miles Sey. (n.d.) Outdoor Laser Measure Camera P7AK. Available at:

https://mileseeytools.com/products/outdoor-laser-measure-camera-p7ak.

[12] Charcity. (n.d.) Distance Measuring Tool. Available at: https://www.amazon.ca/Charcity-
Distance-Waterproof-Pythagorean-Measuring/dp/BOCF25L9V8.

[13] Merritt DK, Chang GK, Rutledge JL. Best practices for achieving and measuring pavement
smoothness, a synthesis of State-of-Practice (2015). Louisiana Transportation Research Center.
FHWA/LA.14/550. LTRC Number: 14-1PF. State Project Number: 30001420.
https://rosap.ntl.bts.gov/view/dot/28837/dot_28837_DS1.pdf .

[14] Statcounter, a web analytics service that uses website trackers to obtain statistics,

https://gs.statcounter.com/os-market-share/mobile/worldwide .

29

https://randomnerdtutorials.com/complete-guide-for-ultrasonic-sensor-hc-sr04/
https://www.dewalt.com/product/dwht77100/100-ft-laser-distance-measurer
https://www.northerntool.com/products/bosch-blaze-100ft-red-beam-laser-measure-max-measuring-distance-100-ft-accuracy-0-0625-in-model-glm100-23-5776799#hotbar-description
https://www.northerntool.com/products/bosch-blaze-100ft-red-beam-laser-measure-max-measuring-distance-100-ft-accuracy-0-0625-in-model-glm100-23-5776799#hotbar-description
https://mileseeytools.com/products/outdoor-laser-measure-camera-p7ak
https://www.amazon.ca/Charcity-Distance-Waterproof-Pythagorean-Measuring/dp/B0CF25L9V8
https://www.amazon.ca/Charcity-Distance-Waterproof-Pythagorean-Measuring/dp/B0CF25L9V8
https://rosap.ntl.bts.gov/view/dot/28837/dot_28837_DS1.pdf
https://gs.statcounter.com/os-market-share/mobile/worldwide

APPENDIX

This project is hosted on MakerRepo, which is essentially a project hosting and collaboration
platform managed by the Center of Engineering and Entrepreneurship Design at the University of
Ottawa. The repository for this project contains all resources including design files and reports. As

a result, only the link to this repository is included below.

Document Name | Document Location and/or URL Issuance Date

MakerRepo https://makerepo.com/bsaditya/2362.gng5140- | 27 November
cycling-facility-surface-smoothness- 2024
measurement

Table 7: Reference Resources

30

https://makerepo.com/bsaditya/2362.gng5140-cycling-facility-surface-smoothness-measurement
https://makerepo.com/bsaditya/2362.gng5140-cycling-facility-surface-smoothness-measurement
https://makerepo.com/bsaditya/2362.gng5140-cycling-facility-surface-smoothness-measurement

