
Project Deliverable D: Conceptual Design
Bailey Watson, 7761424

Ethan Mumford, 300233682

Yang Peng, 300257350

Aditya Mukhopadhyay, 300250553

Ayo Oladipupo, 300200715

1. Individual Subsystems
Please note, items marked with an asterisk will be reported on as future considerations. These items
were deemed important for the Loyalty Platform, but their implementation is not feasible in the given
timeframe.

1.1. Functional Requirements
1.1.1. Software should be cloud-based

• Coded using MS Power Platform

1.1.2. Should allow storage of loyalty points
• “Wallet” function for points storage
• Extra points can be gained by daily/frequent use of app*

1.1.3. Should allow exchange of loyalty points between ecosystem partners
• Users may exchange points from list of connected partners directly thru interface
• Points will have value, compared against 1 ZafinCoin

1.1.4. Must generate profit
• Points can be traded for other points at a rate such that the banks make a profit
• Banks takes cut of points to dollar conversion
• Bank takes cut of user-to-user point sharing

1.1.5. Should allow users to redeem loyalty points
• Redeem for cash
• Redeem for crypto
• Redeem for gift card
• Redeem for goods or service
• When paying with a card you would have the option to pay with points*
• Increase in use will unlock membership tiers, each with their own benefits*

1.1.6. Should provide insights on use of points
• Track points redeemed per user
• Track points exchanged per user
• Track points earned since using the platform
• Track equivalent dollars saved for each user

• Shows when future sales are coming up, so user know what’s coming

1.1.7. Should allow exchange of loyalty points between end-users
• Users may exchange points by adding contacts who also use the platform, like e-transfer

1.1.8. Should allow users to convert points to cryptocurrency
• ZafinCoin
• Dabloonz
• Yes, should be able to purchase cryptocurrency*

1.2. Non-Functional Requirements
1.2.1. Should be high security

• Require security consultant

1.2.2. Should be customizable by each bank/client
• Customizable home page with selected KPI
• Banks can decide how many points they want to give out for certain actions*

1.2.3. Should have simple, visually appealing UI
• Give End-users a simple scheme, like apple products

1.2.4. Should be customizable by end-users/banks
• Airmiles “Dream Miles” or “Cash Miles”
• Customers can set point goals
• Points do not expire
• Give banks a great degree of freedom in the system design interface*

1.2.5. Should be free for ecosystem partners and end users
• Banks pay annual licensing fees

1.2.6. Should be easy to use
• Simple UI
• No complicated operations

1.2.7. Should be cross-platform
• Begin with PC and Apple (HTML?)*

1.2.8. Should support multiple languages
• English
• Mandarin

1.3. Constraints and Metrics
1.3.1. Must be cloud-based

• MS Power Platform

1.3.2. Should allow B2B, B2C, C2C
• MS Power Platform

1.3.3. Small file size to operate on all Operating systems and devices
• MS Power Platform

2. Refined Subsystems
2.1. Functional Requirements

2.1.1. Software should be cloud-based
1. Coded using MS Power Platform

2.1.2. Should allow storage of loyalty points
1. “Wallet” function for points storage and visualization
2. Extra points can be gained by daily/frequent use of app
3. Referral of friends could earn end-users additional points

2.1.3. Should allow exchange of loyalty points between ecosystem partners
1. Users may exchange points from list of connected partners directly thru interface

2.1.4. Should allow users to redeem loyalty points
1. Redeem for cash
2. Redeem for crypto
3. Redeem for gift card

2.1.5. Must generate profit
1. Banks take cut of point-to-point conversion

2.1.6. Should provide insights on use of points
1. Track points redeemed per user (where, how much)
2. Track points exchanged per user (where, how much)
3. Track equivalent dollars for sum of points

2.1.7. Should allow exchange of loyalty points between end-users
1. Users may exchange points by adding contacts who also use the platform, like e-transfer

2.1.8. Should allow users to convert points to cryptocurrency
1. Yes, points-to-dollars-to-crypto

2.2. Non-Functional Requirements
2.2.1. Should be high security

1. Use MS Power Tools

2.2.2. Should be customizable by each bank/client
1. Banks can control fees and exchange rates
2. Customizable insights reporting
3. Customizable user interface

2.2.3. Should have simple, visually appealing UI
1. Use simple scheme

2.2.4. Should be customizable by end-users
1. Customers can set point goals

2.2.5. Should be easily accessible by ecosystem partners (I.e., banks pay licensing fees,
not ecosystem partners or end-users)

1. Banks pay annual licensing fees
2. Ecosystem partners pay to be listed on platform
3. Banks pay one-time licence

2.2.6. Should support multiple languages
1. Languages available in “settings”

2.3. Constraints and Metrics
Same as above.

3. Solutions
3.1. Solution 1

Includes all Subsystem 1s.

3.2. Solution 2
Includes all Subsystem 2s. Where only one subsystem is present, it is included in Solution 2.

3.3. Solution 3
Includes all Subsystem 3s. Where only one subsystem is present, it is included in Solution 3.

3.4. Evaluation Matrix
The following evaluation matrix (Table 1) will be used to evaluate solutions to determine the global
concept. Importance rankings range from 1 to 5, from least important to most important, respectfully.
Solutions may be given 1 to 3 points, from worst to best, respectfully.

Table 1 - Evaluation Matrix

Specifications Importance Solution 1 Solution 2 Solution 3
Functional Requirements

Software should be cloud-based 5 3 3 3
Should allow storage of loyalty points 5 3 2 1
Should allow exchange of loyalty points
between ecosystem partners

4 3 3 3

Should allow users to redeem loyalty
points

4 3 2 1

Must generate profit 5 3 3 3
Should provide insights on use of points 5 3 2 1
Should allow exchange of loyalty points
between end-users

4 3 3 3

Should allow users to convert points to
cryptocurrency

1 1 1 1

Non-Functional Requirements
Should be high security 5 3 3 3
Should be customizable by each
bank/client

2 3 2 1

Should have simple, visually appealing UI 3 2 2 2
Should be customizable by end-users 1 1 1 1
Should be easily accessible by ecosystem
partners and end-users

4 3 2 1

Should support multiple languages 1 2 2 2
Total 139 119 99

4. Global Concept
The global concept has been identified as Solution 1, as per Table 1 above. Concept sketches for
Solution 1 can be found in Appendix B: Global Concept Sketches, and sketched for Solutions 2 and 3 can
be found in Appendix C: Solutions Considered but Rejected. It should be noted that subsystems that
have been rejected or included in other solutions may be reconsidered during iteration. The subsystems
were scored based on their assumed feasibility, and the likelihood of the group being able to implement
them in a functional prototype. Subsystems were also ranked based on how well they suit this
application. Consequently, the selected solution will not only be the most in-line with the problem
statement, but also be the easiest to implement.

Appendix A – Task Plan Update
Write Schedule, Task, and Assignment updates can be seen in below. Our team’s Wrike data has been
transferred to the CEED MakerLab page, here: https://www.wrike.com/open.htm?id=758826668

Figure 1 - Completed Tasks

Figure 2 - Assigned Tasks

https://www.wrike.com/open.htm?id=758826668

Figure 3 - Updated Gantt Chart with Added Detail

Appendix B: Global Concept Sketches

* Home page
before login (For the browser/computer

Sign In

Logo

Promotional Banner

Features Customer Download the

•
Service App

'

,

'
. Link :

- 1

/

* Login Page

Software Name

Card Number/Username

Password :

View
L

Wallet Transfer Settings Insights my Logout
Offers

Loyalty Program Name Loyalty Program Name Loyalty Program Name

Points: Points: Points:

Dollar Value : Dollar Value : Dollar Value :

Collection God : collection God : collection God :

Loyalty Program Name Loyalty Program Name Loyalty Program Name

Points: Points: Points:

Dollar Value : Dollar Value : Dollar Value :

Collection God : collection God : collection God :

Loyalty Program Name Loyalty Program Name Loyalty Program Name

Points: Points: Points:

Dollar Value : Dollar Value : Dollar Value :

Collection God : collection God : collection God :

Loyalty Program Name Loyalty Program Name Loyalty Program Name

Points: Points: Points:

Dollar Value : Dollar Value : Dollar Value :

Collection God : collection God : collection God :

* can click on * Dollar value per point
individual loyalty changes according
programs

and will
to the economy

send to another

window where you

can access more

about the loyalty
programs deals ,

access exchange

points between
businesses , persons

and also redeem
,

etc .
(bitcoin ? ? >

etherium ? ? ?)

are of Ecosystem partner

current
Amount of Points Displayed

Offers
Point to Dollar Ratio Displayed

^

Redeem Button Exchange Button

^ ^

* used to exchange
* used to redeem specific amount with

for rewards another ecosystem * displays
partner current offers

offered by
the ecosystem
partner

Appendix C: Solutions Considered but Rejected

	1. Individual Subsystems
	1.1. Functional Requirements
	1.1.1. Software should be cloud-based
	1.1.2. Should allow storage of loyalty points
	1.1.3. Should allow exchange of loyalty points between ecosystem partners
	1.1.4. Must generate profit
	1.1.5. Should allow users to redeem loyalty points
	1.1.6. Should provide insights on use of points
	1.1.7. Should allow exchange of loyalty points between end-users
	1.1.8. Should allow users to convert points to cryptocurrency

	1.2. Non-Functional Requirements
	1.2.1. Should be high security
	1.2.2. Should be customizable by each bank/client
	1.2.3. Should have simple, visually appealing UI
	1.2.4. Should be customizable by end-users/banks
	1.2.5. Should be free for ecosystem partners and end users
	1.2.6. Should be easy to use
	1.2.7. Should be cross-platform
	1.2.8. Should support multiple languages

	1.3. Constraints and Metrics
	1.3.1. Must be cloud-based
	1.3.2. Should allow B2B, B2C, C2C
	1.3.3. Small file size to operate on all Operating systems and devices

	2. Refined Subsystems
	2.1. Functional Requirements
	2.1.1. Software should be cloud-based
	2.1.2. Should allow storage of loyalty points
	2.1.3. Should allow exchange of loyalty points between ecosystem partners
	2.1.4. Should allow users to redeem loyalty points
	2.1.5. Must generate profit
	2.1.6. Should provide insights on use of points
	2.1.7. Should allow exchange of loyalty points between end-users
	2.1.8. Should allow users to convert points to cryptocurrency

	2.2. Non-Functional Requirements
	2.2.1. Should be high security
	2.2.2. Should be customizable by each bank/client
	2.2.3. Should have simple, visually appealing UI
	2.2.4. Should be customizable by end-users
	2.2.5. Should be easily accessible by ecosystem partners (I.e., banks pay licensing fees, not ecosystem partners or end-users)
	2.2.6. Should support multiple languages

	2.3. Constraints and Metrics

	3. Solutions
	3.1. Solution 1
	3.2. Solution 2
	3.3. Solution 3
	3.4. Evaluation Matrix

	4. Global Concept
	Appendix A – Task Plan Update
	Appendix B: Global Concept Sketches
	Appendix C: Solutions Considered but Rejected
	GNG1103 Conceptual Design_comments.pdf
	Blank Page

	deliverable_D_20211018_word_only.pdf
	1. Individual Subsystems
	1.1. Functional Requirements
	1.1.1. Software should be cloud-based
	1.1.2. Should allow storage of loyalty points
	1.1.3. Should allow exchange of loyalty points between ecosystem partners
	1.1.4. Must generate profit
	1.1.5. Should allow users to redeem loyalty points
	1.1.6. Should provide insights on use of points
	1.1.7. Should allow exchange of loyalty points between end-users
	1.1.8. Should allow users to convert points to cryptocurrency

	1.2. Non-Functional Requirements
	1.2.1. Should be high security
	1.2.2. Should be customizable by each bank/client
	1.2.3. Should have simple, visually appealing UI
	1.2.4. Should be customizable by end-users/banks
	1.2.5. Should be free for ecosystem partners and end users
	1.2.6. Should be easy to use
	1.2.7. Should be cross-platform
	1.2.8. Should support multiple languages

	1.3. Constraints and Metrics
	1.3.1. Must be cloud-based
	1.3.2. Should allow B2B, B2C, C2C
	1.3.3. Small file size to operate on all Operating systems and devices

	2. Refined Subsystems
	2.1. Functional Requirements
	2.1.1. Software should be cloud-based
	2.1.2. Should allow storage of loyalty points
	2.1.3. Should allow exchange of loyalty points between ecosystem partners
	2.1.4. Should allow users to redeem loyalty points
	2.1.5. Must generate profit
	2.1.6. Should provide insights on use of points
	2.1.7. Should allow exchange of loyalty points between end-users
	2.1.8. Should allow users to convert points to cryptocurrency

	2.2. Non-Functional Requirements
	2.2.1. Should be high security
	2.2.2. Should be customizable by each bank/client
	2.2.3. Should have simple, visually appealing UI
	2.2.4. Should be customizable by end-users
	2.2.5. Should be easily accessible by ecosystem partners (I.e., banks pay licensing fees, not ecosystem partners or end-users)
	2.2.6. Should support multiple languages

	2.3. Constraints and Metrics

	3. Solutions
	3.1. Solution 1
	3.2. Solution 2
	3.3. Solution 3
	3.4. Evaluation Matrix

	4. Global Concept
	Appendix A – Task Plan Update
	Appendix B: Global Concept Sketches
	Appendix C: Solutions Considered but Rejected

	deliverable_D_20211018_word_only.pdf
	1. Individual Subsystems
	1.1. Functional Requirements
	1.1.1. Software should be cloud-based
	1.1.2. Should allow storage of loyalty points
	1.1.3. Should allow exchange of loyalty points between ecosystem partners
	1.1.4. Must generate profit
	1.1.5. Should allow users to redeem loyalty points
	1.1.6. Should provide insights on use of points
	1.1.7. Should allow exchange of loyalty points between end-users
	1.1.8. Should allow users to convert points to cryptocurrency

	1.2. Non-Functional Requirements
	1.2.1. Should be high security
	1.2.2. Should be customizable by each bank/client
	1.2.3. Should have simple, visually appealing UI
	1.2.4. Should be customizable by end-users/banks
	1.2.5. Should be free for ecosystem partners and end users
	1.2.6. Should be easy to use
	1.2.7. Should be cross-platform
	1.2.8. Should support multiple languages

	1.3. Constraints and Metrics
	1.3.1. Must be cloud-based
	1.3.2. Should allow B2B, B2C, C2C
	1.3.3. Small file size to operate on all Operating systems and devices

	2. Refined Subsystems
	2.1. Functional Requirements
	2.1.1. Software should be cloud-based
	2.1.2. Should allow storage of loyalty points
	2.1.3. Should allow exchange of loyalty points between ecosystem partners
	2.1.4. Should allow users to redeem loyalty points
	2.1.5. Must generate profit
	2.1.6. Should provide insights on use of points
	2.1.7. Should allow exchange of loyalty points between end-users
	2.1.8. Should allow users to convert points to cryptocurrency

	2.2. Non-Functional Requirements
	2.2.1. Should be high security
	2.2.2. Should be customizable by each bank/client
	2.2.3. Should have simple, visually appealing UI
	2.2.4. Should be customizable by end-users
	2.2.5. Should be easily accessible by ecosystem partners (I.e., banks pay licensing fees, not ecosystem partners or end-users)
	2.2.6. Should support multiple languages

	2.3. Constraints and Metrics

	3. Solutions
	3.1. Solution 1
	3.2. Solution 2
	3.3. Solution 3
	3.4. Evaluation Matrix

	4. Global Concept
	Appendix A – Task Plan Update
	Appendix B: Global Concept Sketches
	Appendix C: Solutions Considered but Rejected

