

GNG2101

Design Project User and Product Manual

Companion Accessibility Tool

Submitted by:

Companion Dev Team, GNG2101B Group 1.5

Jonathan Soliman, 300345528

William Levesque, 300352375

 Andrius Avenido, 300344515

Aidan Nikolaus, 300309124

Jacob Cearns, 300361219

December 1, 2024

University of Ottawa

ii

Table of Contents

Table of Contents .. ii

List of Acronyms and Glossary .. v

1 Introduction ... 1

2 Overview ... 3

2.1 Conventions .. 5

2.2 Cautions & Warnings ... 5

Connection to MongoDB .. 5

3 Getting started ... 6

3.1 Configuration Considerations .. 9

3.2 User Access Considerations ... 10

3.3 Accessing/setting up the System .. 11

3.4 System Organization & Navigation ... 12

3.5 Exiting the System ... 13

4 Using the System .. 14

4.1 Companion Virtual Assistant ... 14

4.1.1 File Uploading .. 15

4.1.2 Saving Conversations.. 16

4.2 Sidebar/Navbar for Page Navigation.. 17

4.2.1 Toggle Expansion ... 18

4.3 History Page ... 18

4.3.1 Continue Conversation.. 19

iii

4.3.2 Delete Conversation .. 19

4.4 Accessibility Resources.. 19

4.5 Theme Settings ... 20

4.6 Login / Sign Up Form .. 20

4.7 About Page ... 21

5 Troubleshooting & Support .. 23

5.1 Error Messages or Behaviors ... 23

5.2 Special Considerations ... 24

5.3 Maintenance ... 24

5.4 Support ... 25

6 Product Documentation: The Final Prototype .. 26

6.1 Front-End (Website Client Side) .. 30

6.1.1 BOM (Bill of Materials) ... 31

6.1.2 Equipment list ... 31

6.1.3 Instructions/Design Breakdown .. 31

6.2 Back-End (Server Side) .. 43

6.2.1 BOM (Bill of Materials) ... 44

6.2.2 Equipment list ... 44

6.2.3 Instructions .. 45

6.3 Testing & Validation .. 51

7 Conclusions and Recommendations for Future Work .. 53

Lessons Learned.. 53

Future Work Recommendations ... 53

iv

Suggestions for Future Teams .. 53

8 Bibliography ... 54

APPENDICES .. 55

9 APPENDIX I: Design Files .. 55

10 APPENDIX II: Other Appendices ... 56

v

List of Acronyms and Glossary

Table 1. Acronyms

Acronym Definition

Table 2. Glossary

Term Acronym Definition

User Interface UI The visual elements of an application
that users interact with, like buttons
and menus.

Application
Programming
Interface

API A set of protocols that allows
different software to communicate
with each other.

Comma-
Separated
Values

CSV A file format used for storing tabular
data, where each line represents a
row and columns are separated by
commas.

Introduction 1

1 Introduction
This User and Product Manual (UPM) provides the information necessary for future users,

developers, and engineers to effectively use and view prototype documentation for Companion, an
accessibility-focused chatbot and resource website designed to assist professors and educators in
improving digital accessibility of course materials. Built with the following popular web
technologies such as MongoDB, Express.js, React.js, Node.js (MERN Web Stack), and utilizing
OpenAI Services, this tool combines accessibility resources with a powerful chatbot interface to
simplify the process of identifying, evaluating, and improving coursed content accessibility.

Key Assumptions made for this manual include:

1. Users have a basic understanding of web interfaces and technologies
2. Users possess working knowledge of Canvas Ally and are familiar with its role in evaluating

accessibility requirements
3. Professors and Educators may not have in-depth technical expertise, but aim to improve

accessibility compliance in their materials
4. Users understand OpenAI services and the role of the GPT-4o model

This manual serves the following purposes:
- Educate users on how to navigate and utilize Companion efficiently
- Clarify how to upload and analyze CSV files from Canvas Ally to address accessibility benchmarks
- Act as a reference for core features and settings
- Providing detailed prototype documentation for Companion

This document is intended for:
- Professors and educators aiming to learn how to use Companion in length with Ally to empower

them with the ability to improve their course accessibility
- Developers and Technical teams involved in maintaining or enhancing Companion

Note: Familiarity with Canvas Ally and its role in accessibility assessments is essential for users
to effectively interact with Companion.

Security, Safety, and Privacy Considerations
Companion is designed with user security, safety, and privacy as priorities:

1. Data Security:
 Uploaded CSV files are processed securely and stored temporarily for analysis.

Files are not stored permanently unless the user explicitly saves their data.
 Communication between the user’s browser and the server is encrypted via

HTTPS.
2. Privacy Protections:

 User interactions and chat histories are saved only with explicit consent and can be
deleted by the user at any time.

 The chatbot leverages OpenAI services, which comply with robust privacy
standards.

Introduction 2

3. Accessibility and Safety:
 Customizable themes ensure inclusivity for users with varying abilities.
 The chatbot interface is built to comply with accessibility standards, including

WCAG.
4. Authentication Security:

 User accounts are secured with strong authentication protocols, and sensitive data
(e.g., passwords) is hashed and stored safely.

By incorporating these measures, Companion ensures a safe, secure, and accessible experience for
all users while prioritizing privacy and data protection.

Overview 3

2 Overview
Accessibility in digital education platforms is a growing concern, yet many tools provide

technical, overwhelming, or unclear feedback. Professors often struggle to interpret these
recommendations, leading to unaddressed accessibility gaps that affect students with disabilities.
This makes it harder for institutions to create inclusive learning environments, impacting student
engagement and equity. The Companion Accessibility Tool addresses this problem by simplifying
accessibility feedback, making it actionable, understandable, and easy to implement. Companion is
specifically made to help analyze Canvas Ally csv files. This helps educators ensure their materials
are accessible, improving the learning experience for all students.

Fundamental Needs of the User

1. Clarity: Professors need clear, concise, and actionable feedback on accessibility issues.

2. Efficiency: Users require quick and simple solutions to make their course materials
compliant without significant time investment.

3. Customization: A flexible tool that allows personalized themes and settings for ease of use,
such as font size or dark mode.

4. Integration: A system that can easily process data from existing accessibility programs like
Ally (in Canvas) without needing advanced technical expertise.

5. Interactive Support: A chatbot or interface that can provide real-time assistance and
answer questions about accessibility.

Screenshot of Final Prototype

Overview 4

What Differentiates Companion from Others

1. Actionable Guidance: While other tools focus on technical details, Companion simplifies
feedback into practical steps.

2. Chat Interface: The chatbot provides an interactive, conversational way to understand and
fix accessibility issues.

3. Customization: Features like adjustable font size, themes, and saved conversations cater to
accessibility for the user themselves.

4. Multi-Functionality: Beyond just feedback, it serves as a hub with accessibility resources,
benchmarks, and interactive tools.

5. Focus on Education: Tailored specifically for educators in higher education to align with
their workflow and goals.

Key Features or Major Functions

 CSV File Processing: Professors upload files from Ally or similar tools for detailed
feedback.

 Chatbot Interface: Users receive feedback in a conversational format powered by GPT-4,
tuned for accessibility.

 Customization Settings: Options for font size, themes, and dark mode to enhance usability.

 Resources and Tools: A built-in library of accessibility guidelines, benchmarks, and
interactive components.

 Conversation Saving: Users can save chat histories to refer to prior feedback.

System Architecture and User Access Mode

System Construction: The Companion Accessibility Tool is a web-based application built on
the MERN stack (MongoDB, Express.js, React, Node.js). The backend leverages the ChatGPT
API for processing conversational feedback.

 User Access Mode:

 Professors interact with the system through a graphical user interface (GUI).

 CSV file uploads allow accessibility data input.

 Chatbot feedback and settings are available via the website interface.

 Saved conversations are accessible when user is logged in

Overview 5

 Special Conditions: The system is designed to be fully accessible itself, adhering to WCAG
standards for inclusive design.

2.1 Conventions

<desc>: These tags are used throughout the document and pictures; they indicate
placeholders for information for the user to provide such as put your password here: <password>.

2.2 Cautions & Warnings

API Key for OpenAI Services

Users must obtain a valid API key from OpenAI to access the ChatGPT API. Without the
key, the backend functionality relying on the API will not work.
API keys are unique and must be kept secure to prevent unauthorized usage. Sharing your
key may result in excessive charges or service disruptions.

Action:

 Visit OpenAI's API Page to create an account and generate an API key.

 Store the key securely, typically in an environment file (.env), and avoid hardcoding it
directly into the application code.

Connection to MongoDB

The MongoDB database may require your IP address to be added to its access list to allow
proper backend functionality. Without this, the application will fail to connect to the
database.

Action:

 Ensure your IP address is whitelisted in the MongoDB cluster's network access settings.
This can be managed through the MongoDB Atlas interface or your self-hosted database
settings.

 Refer to the official MongoDB documentation for details on managing network access:
https://www.mongodb.com/docs/.

Getting started 6

3 Getting started

The source code for Companion can be found at
https://github.com/andriusavenido/Companion_GNG2101. This section will walkthrough how to
run Companion locally. Important information, software requirements, and extra steps can be
found after this piece.

Downloading the Source Code

1. Navigate to https://github.com/andriusavenido/Companion_GNG2101 to view the source
code.

2. Click the green “Code” button and its local section. Make sure that HTTPS is selected.
Copy the link show. This will be the link to the source code that we will tell Git (view
below for more information) to download the resources from.

3. Create a folder on your computer (name it anything). Open Visual Studio Code and open

the folder. Click “Terminal” and open a new terminal and write in the line: git clone

Getting started 7

<link>. All of the source code should be downloaded.

4. Open the inner folder inside the folder you are in so that the source code folder is the main

thing VS Code will be viewing as such you should see only two folders and some extra

files. The website code is stored in
client, and the server code is stored in server. These two folders run two separate
applications that talk to each other. Both will be running when using the website.

5. We now need to download additional resources. The source code hosted on GitHub does
not contain a folder called “node_modules” for both the client and server folders. This
folder contains important code that will help run the project (this code was created by
other open-source resources and can accumulate in large size; therefore, it is typically not
stored online).

6. Open your terminal once more. Write “cd client”. Your terminal is now looking at that
folder specifically. Write the command “npm install”, and the node modules will be

Getting started 8

downloaded. Do
the same for the server. Open a new terminal, type “cd server” and run the command “npm
install”

7. Congratulations, you have now downloaded the source code on your computer locally.
You can review the code and make changes. Before running the website, we need to do
more important security configurations.

Configuring Specific Files

1. To run our server, we need to setup a file that will allow us to store our sensitive
information such as keys and passwords.

2. Open the server folder and create a file called “.env” at the top most directory area.

Your folder should look like this

Getting started 9

3. In that .env file, write the following text.

a. database_URI: paste your MongoDB connection URL here
b. SECRET: here write any word over 20 characters. This is a component used to

hash passwords. It can be anything.
c. OPENAIKEY: paste your OpenAPI Key
d. PORT: write 3000.

4. Save the file (CTRL + S)

Congratulations! You have successfully downloaded the source code on to your local computer.
You are now ready to run and use Companion.

Running the source code can be found below.

3.1 Configuration Considerations

Important considerations and requirements should be acknowledged when trying to run Companion.
While you will interact with developer tools, no programming skills are required. Furthermore, keep
and password or key or link found when accessing these different sites very secure and private as
they maybe (and probably are) sensitive.

1. OpenAI API Key and Service
a. Companion uses OpenAI’s services to access the GPT-4o Large Language Model to

power its chatbot
b. You will need to sign up for an OpenAI account and generate an API key. Payment

will be required to enable the key to have access to GPT-4o. Can be found at
https://platform.openai.com/docs/overview

c. IMPORTANT: Keep this key private and secure, it is required for the chatbot to
work.

Getting started 10

2. MongoDB Atlas
a. Companion uses a cloud database to store information like user accounts and saved

chat histories.
b. MongoDB Atlas is a free, cloud-based database service that will be required to setup,

found at https://www.mongodb.com/products/platform/atlas-database
c. You’ll create an account and setup a “connection string” which tells Companion

where to find our database.
3. Git and Github

a. Git is a tool used to download the Companion source code which is hosted on
GitHub. Download Git here: https://git-scm.com/

b. Expertise in Git is not required, installing and using simple commands as outlined
above is enough. Here is a resource:
https://docs.github.com/en/repositories/creating-and-managing-
repositories/cloning-a-repository

4. Node.js and Node Package Manager (NPM)
a. Node.js is a platform that allows Companion’s server code to run locally on your

computer.
b. Node package manager comes bundled with Node.js and is used to install

additional tools and resources with single simple commands. It will help you run
everything including the front-end (visual webpage) and back-end (server) on your
computer. https://nodejs.org/en/download/package-manager

5. Visual Studio Code (VS Code)
a. VS Code is a free and easy-to-use code editor that allows you to view and modify

the source code easily. You will use it to view and run the source code effectively
and make minor changes to specific config files (such as adding in your API key).

b. Beginner-friendly and great for managing the project:
https://code.visualstudio.com/download

6. A Modern Web Browser
a. Companion works through a website interface, so you will need a modern browser

like Google Chrom or Microsoft edge to use it.

3.2 User Access Considerations

The Rutgers Companion prototype is designed for diverse user groups: professors and
educators seeking to improve course material accessibility using Canvas Ally data; administrators
and accessibility specialists overseeing compliance and providing feedback; students and teaching
assistants assisting with content preparation; developers and technical support teams maintaining
the system; and accessibility advocates using the tool for training or evaluation. Access varies by

Getting started 11

role—professors and students need working knowledge of Canvas Ally, administrators may
require broader permissions, and developers need advanced access for debugging and updates. All
users require an OpenAI API key, authentication credentials, and a modern web browser.
Restrictions include limited access to sensitive data, demo-mode limitations for external
advocates, and adherence to privacy and security protocols.

3.3 Accessing/setting up the System

Running the Source Code

Running the source code is very simple and just requires a few commands.

1. Open a new terminal. Write “cd server” and then enter the command “npm start”. Your
server should be running

2. Open another terminal (don’t close the server one). Write “cd client” and then enter the
command “npm run dev”. Your front end should now be running. Press the link and it
should direct you to the Companion webpage running locally on your computer.

Information on how to use Companion itself can be found in Section 4.

Getting started 12

3.4 System Organization & Navigation

Here is a quick explanation of our project setup. As explained, there are two main folders
for this project in the source code: client and server. The client and server software will be run
simultaneously, and the client will talk to the server when doing tasks such as talking to GPT-4o.
Client has all the website code and Server has all the server code:

Client Side: This is the part of the application that users interact with directly (what you see on
the screen).

- There are multiple pages used for navigation: Home → About → Accessibility → History
→ Options.

- Page Navigation is controlled by a file called App. Other pages and systems of the client
side can call this to move pages directly.

- Each page has their own section for website design (what it looks like) and a section for
code logic (what the page will do).

- There are CSS files used to style the pages (like what color this button should be etc.)
- The top folder has different specific software-related configuration files
- There are multiple different folders and files used for more complex logic and processing

which is explained in more detail under prototype design.

Server Side: This part runs behind the scenes and handles things like saving data, processing
requests, and communicating with other services (like OpenAI).

- There is a main file called server. It contains the core logic and settings such as setting up
database connection etc.

- There are files called controllers. They are the managers of the server.
o Conversation Controller: Manages logic for saving and retrieving conversations
o User Controller: Manages user tasks such as logging in and registering.

- There are files called Models. They define how data is stored in the database such as a user
model which describes how things such as password should be stored.

- There are routes, that manage the HTTPS requests sent by the client.
- Finally, there are services tasked with specific tasks. Such as the OpenAI service file

which contains all related logic towards talking to GPT-4o (specific rules and prompts).

Getting started 13

3.5 Exiting the System

Turning off the locally run server is very simple. All you must do is exit/close your code
editor, VS Code, which will stop your system from running the software in the terminals.
MongoDB and OpenAI services run 24/7 so there is no requirement to close them.

Using the System 14

4 Using the System
The following sub-sections provide detailed step-by-step instructions on how to use the

various functions or features of the Companion Accessibility Tool Website.

4.1 Companion Virtual Assistant

The home page and landing page of the website features the companion virtual assistant. It
features a text input box where users can type in messages and an upload drop box where users
can upload their companion csv files.

Using the System 15

To begin, type in a message and press Enter. Companion will respond to your message.

 You can ask it anything
regarding to accessibility and it will respond effectively. Companion can remember the entire
conversation and what it analyzed.

4.1.1 File Uploading

To upload a file, simply press the upload csv file. A file window should prompt you to

select your specific file, press open and it should be saved on the Companion website. Now you

can ask Companion to analyze it. You can delete your file with the button or upload a new one to

override it.

Using the System 16

4.1.2 Saving Conversations

When logged in, you can save the state of the current conversation by clicking the save

conversation button at the bottom of the page.

Using the System 17

4.2 Sidebar/Navbar for Page Navigation

Users can look at the left of the webpage to see the Sidebar. They can click on any section

to navigate to that page effectively.

Using the System 18

4.2.1 Toggle Expansion

Press the Hamburger Icon (3 horizontal lines stacked) on the side bar to close it. It can be
pressed again to open it.

4.3 History Page

The history page contains all the conversations that users have saved. They can scroll

through them using the scroll wheel if there is a lot. They can also hover each section.

Using the System 19

4.3.1 Continue Conversation

Press the Continue Conversation… link to continue the conversation. You will be redirected

to the chat interface with the conversation history selected.

4.3.2 Delete Conversation

Press the delete link on any conversation to delete it.

4.4 Accessibility Resources

The accessibility resources page provides users various links and resources to help them
with accessibility rules. The can select any of the bulleted links which will redirect upon mouse
press and can watch the video.

Using the System 20

4.5 Theme Settings

The settings page allows users to select different themes for the website. They can click the menu,
and it will drop down three options: Default, Light, and High Contrast. They can select any one
and it will change the colors of the pages accordingly. Users can choose their preference.

4.6 Login / Sign Up Form

The login/signup form is a simple, user-friendly feature that allows users to create an account
or log in to their existing account. It ensures secure access to the Companion Accessibility Tool,
allowing users to save conversation history. Users can input information into specific fields.

Using the System 21

4.7 About Page

This is the about page where users can click on different sections to open up information about the
website. They can also view an email to contact the Companion Team.

Using the System 22

Troubleshooting & Support 23

5 Troubleshooting & Support

5.1 Error Messages or Behaviors

Below are common error messages or behaviors a user may encounter, their likely causes, and
corrective actions:

Frontend Errors:

 "Network Error": Indicates connectivity issues between the client and server.
o Cause: Server downtime or client internet issues.
o Action: Check the internet connection. If the server is down, wait for notification

of resolution from support.

 UI Freezing or Non-responsive: The interface becomes unresponsive to user input.
o Cause: Rendering conflicts or excessive client-side data processing.
o Action: Refresh the page. If the issue persists, clear the browser cache or try a

different browser.

Backend Errors:

 "400 Bad Request" during Login: The request sent to the server was invalid.
o Cause: Missing or improperly formatted login credentials (e.g., empty email or

password fields).
o Action: Ensure all required fields are filled and formatted correctly before

resubmitting.

 "401 Unauthorized": User authentication failed.
o Cause: Invalid credentials or an expired token.
o Action: Verify login credentials. If using a token-based system, reauthenticate to

generate a new token.

 "500 Internal Server Error": General server-side failure.
o Cause: Unhandled exceptions in Node.js, MongoDB errors, or ChatGPT API

issues.
o Action: Report the issue to support with a timestamp and error details.

 "Database Connection Error": Failure to access MongoDB.
o Cause: MongoDB server is down or incorrect connection credentials.
o Action: Restart the database server. Verify database credentials in the environment

configuration file.

Troubleshooting & Support 24

ChatGPT API Errors:

 "API Key Invalid or Missing": Unable to connect to ChatGPT API.
o Cause: Incorrect or expired API key.
o Action: Verify and update the API key in the backend environment settings.

 "Rate Limit Exceeded": ChatGPT usage has exceeded the allowed limit.
o Cause: Excessive API calls in a short time frame.
o Action: Implement rate-limiting or wait for the limit to reset.

5.2 Special Considerations

- Ensure the backend server and MongoDB database are hosted on reliable platforms with
robust monitoring to minimize downtime.

- Monitor login flow and authentication token systems regularly to ensure no expiration or
validation errors.

- For ChatGPT API, monitor usage limits regularly and implement fallback mechanisms for
high-traffic scenarios (e.g., provide predefined responses).

- Maintain compatibility with assistive technologies to ensure a seamless experience for all
users.

5.3 Maintenance

Regular maintenance procedures include:

 Database Maintenance:
o Run weekly backups of the MongoDB database.
o Monitor database performance metrics and resolve slow queries.

 Codebase Maintenance:
o Review logs for recurring errors and address them promptly.
o Update dependencies (Node.js, React, etc.) monthly to patch security

vulnerabilities.

 ChatGPT API Maintenance:
o Periodically check for updates to the API documentation.
o Renew the API key before expiration.

Troubleshooting & Support 25

5.4 Support

For resolving issues or gaining assistance with the technologies used in the application, users and
developers can access the following resources:

JavaScript

 MDN Web Docs: Comprehensive documentation on JavaScript syntax, features, and
APIs.

o Website: https://developer.mozilla.org/en-US/docs/Web/JavaScript
 Stack Overflow: A community-driven platform for troubleshooting JavaScript-specific

errors.
o Website: https://stackoverflow.com

MongoDB

 Official MongoDB Documentation: Covers topics from database setup to advanced
querying techniques.

o Website: https://www.mongodb.com/docs/
 MongoDB University: Offers free courses on database design and usage.

o Website: https://university.mongodb.com/

ChatGPT API

 OpenAI Documentation: Detailed guides on using the ChatGPT API, including examples
for integration.

o Website: https://platform.openai.com/docs/
 OpenAI Support: For troubleshooting API-related issues or account-specific queries.

o Contact: Use the support chat feature on https://platform.openai.com/

React

 React Documentation: Official resources for understanding React concepts and building
applications.

o Website: https://reactjs.org/docs/getting-started.html

Product Documentation: The Final Prototype 26

 FreeCodeCamp React Tutorials: Beginner-friendly tutorials and projects to enhance
understanding.

o Website: https://www.freecodecamp.org/learn/

Node.js

 Node.js Documentation: Offers guides on Node.js APIs and development best practices.
o Website: https://nodejs.org/en/docs/

 Node.js Slack Community: A platform for developers to discuss issues and share
solutions.

o Website: https://nodejs.org/en/get-involved/community/

General Programming Support

 GitHub Discussions: Check repositories for open discussions on related issues or features.
o Website: https://github.com/

 W3Schools: Beginner-friendly tutorials and examples for learning the core web
technologies.

o Website: https://www.w3schools.com/

These resources offer reliable support and guidance for troubleshooting and understanding the
tools and frameworks used in this application.

6 Product Documentation: The Final Prototype

This section highlights the specific documentation for the design and implementation of the
final prototype of the Companion Accessibility Tool. This section is specifically designed for
developers or engineers looking to recreate the Companion Accessibility Tool; thus, a level of web
design and development is assumed.

Here are the various technologies required and discussed:

 React: A JavaScript library used for building user interfaces. It simplifies the creation of
dynamic, reusable UI components and ensures seamless user experiences through virtual
DOM updates. Contains its own subscript of HTML called JSX, allowing for more
developer control.

Product Documentation: The Final Prototype 27

 Node.js: A runtime environment that enables the execution of JavaScript code on the server
side. It is used to handle backend logic and integrate the frontend with the database and
APIs.

 npm: The Node Package Manager, used to manage dependencies and libraries required for
the project. It simplifies package installation, version control, and dependency management.

 MongoDB: A NoSQL database used to store and retrieve data for the application. It is highly
flexible and scalable, making it ideal for managing unstructured or semi-structured data.

 Express.js: A lightweight and flexible web application framework for Node.js. It is used to
build the backend server and manage API routes and middleware.

 HTML: The standard markup language for structuring the web application’s content. It
provides the foundational elements for building web pages.

 CSS: A styling language used to design and layout web pages. It ensures the application's
visual appearance is user-friendly and aligns with accessibility standards.

 Vite: A modern frontend build tool that is faster than traditional bundlers like Webpack. It
improves development speed with its efficient Hot Module Replacement (HMR) and
optimized production builds.

 HTTPS: The secure version of HTTP, used to ensure secure communication between the
web application and the server by encrypting data transfers.

 JavaScript: The primary programming language for creating interactive and dynamic web
functionalities in the frontend and backend.

Core Idea:

The Companion Accessibility Tool was planned with a range of complex features:

- AI Interactivity
- Chatbot Interface
- CSV File Uploads and Analysis
- Accessibility benchmarks and feedback
- Customizable User Settings
- User Authentication
- Saved Chat Histories
- Interactive Tools and Resources

To implement these features efficiently, it was essential to choose web technologies that
supported rapid development while ensuring scalability and reliability. To meet these needs, the
popular MERN stack (MongoDB, Express.js, React, and Node.js) was selected as the foundation
for the website's development. This choice provided several advantages:

Product Documentation: The Final Prototype 28

 MongoDB: A NoSQL database that offers flexibility for managing and storing diverse
data formats, making it ideal for handling user data, saved conversations, and accessibility
configurations.

 Express.js: A lightweight and robust web application framework for Node.js, simplifying
the creation of RESTful APIs for seamless communication between the frontend and
backend.

 React: A powerful library for building dynamic user interfaces. Its component-based
architecture and virtual DOM capabilities enabled the creation of an interactive and
accessible user experience.

 Node.js: A server-side runtime environment that allowed for fast and scalable backend
development, providing the foundation for integrating AI models and handling
authentication processes.

This combination of technologies not only streamlined the development process but also
ensured that the planned features could be implemented in a performant, maintainable, and user-
friendly manner.

Other Considerations

During the planning phase, various technologies and languages were considered:

 Python: Known for its simplicity and extensive AI and machine learning libraries, Python
was a strong candidate for handling the AI interactivity features. However, integrating
Python with modern web frameworks would have added complexity to the stack.

 PHP: A popular backend language for web development. While it provides robust server-
side capabilities, its traditional use in monolithic applications made it less suitable for a
modern, interactive, and component-based architecture.

 Ruby on Rails: Its rapid prototyping capabilities and developer-friendly environment were
appealing. However, the lack of widespread adoption for AI and real-time interactivity
presented challenges.

 Java: While powerful and scalable, Java's verbosity and heavier frameworks (e.g., Spring)
would have slowed development compared to lightweight, modern alternatives.

Ultimately, JavaScript was chosen as the single language for the entire stack. This decision
was driven by its ability to power both the frontend and backend seamlessly, enabling efficient data
exchange via JSON (JavaScript Object Notation) and reducing the need for context-switching
between different languages.

Product Documentation: The Final Prototype 29

The MERN stack (MongoDB, Express.js, React, and Node.js) was selected as the
foundation of development, complemented using OpenAI services for integrating AI features. This
stack provided:

 A unified development environment, streamlining communication between the frontend,
backend, and database.

 Native JSON support, enabling efficient data handling and API integration.
 Compatibility with modern tools and APIs, such as OpenAI services, for embedding AI

interactivity into the platform.
 Easy Website Testing and easier integration with HTML and CSS

Overall, sticking to JavaScript not only simplified the development process but also
empowered the use of JSON for data transmission and integration with cutting-edge services. This
ensured the Companion Accessibility Tool could be built rapidly while remaining scalable and
accessible.

Systems Diagram

Here is a detailed system interaction diagram to breakdown the sub systems of our project:

Figure #. System Interaction Diagram

Product Documentation: The Final Prototype 30

**

IMPORTANT: Below is our break down of how the systems were designed. However, knowledge
and how to use specific technologies are not discussed since they are assumed that the user can use
and research them on their own. This is not a tutorial on the MERN stack, git, npm, or other
related technologies! A guide on building a house wouldn't teach you how to use a hammer or how
to mix cement, but would instead focus on the architectural plans, layout, and materials used to
construct the house.

**

6.1 Front-End (Website Client Side)

This section breaks down the front-end implementation. All specific code and implementation can

be found at https://github.com/andriusavenido/Companion_GNG2101/.

Product Documentation: The Final Prototype 31

6.1.1 BOM (Bill of Materials)

Note: This BOM is shared with the Back End Subsystem.

6.1.2 Equipment list

- Visual Studio Code
- Modern Browser
- React and JavaScript Front-End Technologies
- Vite Web Bundler

6.1.3 Instructions/Design Breakdown

Interface Design

The focus was to create a user interface that is friendly, simple, and accessible. The colors were
chosen and modified based on client wishes. Plain CSS was used to style the pages. Here are our
designs that can be used as reference to recreate the layouts:

Home Page and Navbar:

Product Documentation: The Final Prototype 32

Home Page with Chat Started and file uploaded

Accessibility Resource Page

Product Documentation: The Final Prototype 33

History Page

Theme Settings

Product Documentation: The Final Prototype 34

User Login and Signup

Product Documentation: The Final Prototype 35

About Us Page

Client Folder Structure

Product Documentation: The Final Prototype 36

 This is the structure of our client folder in our project.

Pages

In our React application, each of our page components were structed in on pages folder. Each
page had a subfolder containing its own .JSX file and .module.css file. This allowed us to isolate
development for functionality and styling for each page. This also ensured any CSS would not

overlap to a different page.

Navbar, Page Navigation, and Page Routing

Product Documentation: The Final Prototype 37

The router from the React Router Library was used for page navigation. This allowed for ease of
use by utilizing its custom “Link” tag in our Navbar component to redirect page navigation quickly.
Here is our App.jsx page where all the routing is setup. Some page routes are protected by user

authentication.

Here is a section of our Navbar component that utilizes the Link property where if the user clicks
on it, they will navigate to a different page. The Navbar also utilized state variables to control if it
is expanded or not. The animation was done in CSS. ReactSVG icons from its named library were
used as well to have accessible icons for viewing.

React Context, History and Authentications

Product Documentation: The Final Prototype 38

Our application has various global states that need to be managed:

- History: When a user wants to continue their previous conversation on the history tab, the
application will need to temporarily store the conversation (stored in a list format, see Back-
end for more information) and send it to the Home page that contains the chat interface and
start it.

- User Authentication: We need to store the user object and send it to all components that
need it for validation such as the history page (which needs the user id to fetch the histories
of the user).

- Theme: We need to store which theme was selected to send it to other UI components to
change color.

Thus, we utilized React Context to handle these states. Here is our main.jsx file to wrap our
application with the contexts. The providers will send the information to anything inside of it (which
is the App that contains the entire application).

We also have our different context files that handle the higher level of state:

Here is an example of the HistoryContext file:

Product Documentation: The Final Prototype 39

Any child components can access messageHistory and the setMessageHistory and
clearMessageHistory functions. An example is our chatHandler file (see hooks for explanation)
where when constructed, will load the messageHistory into its messages list that can be viewed.
Simply: user clicks continue conversation  Redirect to chat interface  initially load chat
handler  set messages from history context  finally load chat ui so user can view the past
messages in the chat ui.

Other contexts work in a similar principle where they contain some logic and state that are called
by other components. See the source code for the specific implementation.

React Hooks, Fetching Data, Streaming Responses

In our frontend, we must call the server to retrieve or send information. Therefore, we used 3
different React Hooks, separate files to abstract logic, that can be used in any component to do
specific server fetch and send operations:

- useHistoryManager: This hook is used to fetch conversations history of a user from the
server (where the server fetches it from database, see models in the back-end to see how

Product Documentation: The Final Prototype 40

these are structured). This hook also has functions that can be used to create or delete a
conversation. Here is a sample of the file.

 When this hook is constructed, it does an
initial call, setting the conversationHistory of the specific user. This can be then used in
the UI to show the information. Here is the History page that utilizes this hook:

 It calls the history manager
and then formats all the information in its markup.

- useLoginSignup: This hook contains functions that delegate HTTPs POST methods to
sign or login the user into the server. It sends a request and then the server will respond
with the user object that was created or found.

- useChatHandler: This hook is the most crucial in the program, it handles the states of
chat messages sent by the server from our AI assistant Companion. This hook contains the

Product Documentation: The Final Prototype 41

functions for uploading a file, sending messages to the AI, and receiving messages from
the AI. This hook also will manage the stream of response data that OpenAI sends and by
incrementally appending the new data into the messages list, the application will be able to
show a generative animation of the response.

 This is snippet of the file,
where the hook continuously updates the message array after calling for a AI response.
This hook is used in the chat interface and when the message list is updated, the UI is
updated (thanks to React’s complex state updates). See source code for the specific
implementation.

Chat Interface, Auto Response Formatter

The Home page jsx file also handles the chat interface. When the user starts typing, state is updated
to switch the layout into the chat interface. This is the most complex page file since it calls multiple

Product Documentation: The Final Prototype 42

things such as the chat handler hook, authentication, message history, and even manages UI updates.

Here we can see all the functions and properties the Home file is using from other areas in the
program. In addition, messages in the message list are shown in the UI, and they are also parsed
into an auto formatter. This was added so that the raw text responses from the AI can be more
legible.

Product Documentation: The Final Prototype 43

Our parseMessageToJSX can be seen here: It
contains a lot of complex regex and formatting. Overall, all these components allow the application
to have one clean and effective chat interface for use.

6.2 Back-End (Server Side)

This section breaks down the back-end implementation. Note: MongoDB and OpenAI services
will be discussed, but setting up those services on other websites will not be discussed. That
should be researched by the users themselves since this guide has a level of assumption. All
specific code and implementation can be found at
https://github.com/andriusavenido/Companion_GNG2101/.

Product Documentation: The Final Prototype 44

6.2.1 BOM (Bill of Materials)

Note: This BOM is shared with the Front-End subsystem

6.2.2 Equipment list

- Node.js
- Mongoose
- MongoDB
- OpenAI API
- Visual Studio Code
- Postman (for testing)
- Express.js
- NPM, Nodemon

Product Documentation: The Final Prototype 45

6.2.3 Instructions

Our server is much simpler than the Front-End, however it is still quite important and complex.

We organized our server folder into different sections:

Express and Routing

Our server is build using the Express framework which allows us to create a web server with ease
and have it handled all the specific implementations. The server is run from one file called
server.js that utilizes different things from different areas of the project.

Product Documentation: The Final Prototype 46

- dotenv, is used to handle our environment file (that contains keys and passwords)
- express/app runs the server.
- We import different routes that are used to handle the different HTTPs calls that can be

made to this server from the client. One used for users, conversations, and OpenAI calls.
- Mongoose is a library used to connect to the MongoDB database

MongoDB, Mongoose, and Models

As seen above, we utilize MongoDB and Mongoose to handle database connections. We store
both conversations and user accounts in the database and define the information of each in the
following models:

Product Documentation: The Final Prototype 47

HTTPS Controllers

We use two different controller files that contain all
the logic used for the conversations and user HTTPs routes. These controllers contain logic for
talking to the database (creating, deleting, etc.). See source code for specific implementation.

Authentication

Our server also handles specific authentication for user login and signups. We utilize JWT to
handle tokens for authentication with the front end to ensure our data is encrypted. We also use
encryption libraries to hash passwords securely:

Product Documentation: The Final Prototype 48

See source code for specific implementation. See PD E (in design files) for more details as well.

CSV File Reader

We have a file that aggregates the data read from a CSV file. The files are passed through our

OpenAI route as such: where we
use the library, multer, to handle the storage of the file. This file is then sent to the file reader to be
aggregated.

Product Documentation: The Final Prototype 49

 This CSV reader is specifically
tailored towards the CSV files outputted/generated by Ally.

OpenAI Service

The OpenAI Service file is the most crucial file in the server. It is accessed through a distinct
HTTPs route and handles all logic pertaining to communicating with the OpenAI API.

 This is the route for the AI service
that the front end will call. In the service file we have two functions with our custom engineered

Product Documentation: The Final Prototype 50

prompt that contains the Companion AI personality and rules. This is the prompt that is sent
initially to the OpenAI API at every call.

Finally, we have the main function in the service that calls the API. We chose to get the responses
in streamed chunks so that the responses would come faster and allow us to have a generative
effect in the frontend.

Summary of the Cycle: Front end calls with message  go to openai route  go to openai service
 receive OpenAI streamed response  stream response continuously to front-end.

Product Documentation: The Final Prototype 51

6.3 Testing & Validation

Testing was done using various tools such as Vite, web browsers, Postman, and external
users to test various metrics. Note: ChatGPT was used to format our table below:

Test Case Metric

Expected
Value

Test
Description

Actual
Result Pass/Fail

1. User
Authentication

Authentication
Success Rate

100%
successful
logins with
valid
credentials

Test that a
user can
successfully
log in with
correct
username
and
password
and receive a
valid JWT
token.

100%
successful
logins with
valid
credentials Pass

2. Chat
Response
Time

Average
Response
Time (Latency) < 2 seconds

Measure how
long it takes
for the
chatbot to
respond after
sending a
message.

Average
response
time: 1.5
seconds Pass

3. CSV File
Upload

File Upload
Success Rate

100% of
valid CSV
files are
processed
successfully

Test that a
valid CSV file
uploads
correctly and
is parsed into
structured
data without
errors.

100% of
valid CSV
files
processed
successfully Pass

Product Documentation: The Final Prototype 52

4. Theme
Switching
(Light/Dark)

Theme Toggle
Success Rate

100% of
users can
toggle
between
light and
dark modes

Test that
users can
switch
between
light and
dark themes,
and the
change
persists after
page reload.

100%
success rate
for theme
toggle,
persists after
reload Pass

5. Accessibility
Features
(Screen
Reader)

Accessibility
Compliance
(%)

100% of chat
content is
accessible via
screen
readers

Test that all
chat content,
buttons, and
navigation
elements are
properly read
by screen
readers.

100%
compliance
with screen
readers Pass

6. Error
Handling in
Chatbot

Error Handling
Success Rate

100% of
errors are
caught and
appropriate
messages
displayed

Test that any
failed
requests to
the OpenAI
API return a
meaningful
error
message
without
crashing the
system.

All errors
returned
appropriate
error
messages Pass

Conclusions and Recommendations for Future Work 53

7 Conclusions and Recommendations for Future Work

Lessons Learned

Throughout the development process, we identified several areas for improvement that
will guide future iterations. One key lesson was the importance of creating a responsive
user interface that adapts seamlessly to different screen sizes. Challenges like unnecessary
scrollbars or overlapping elements underscored the need for thorough testing across
multiple devices to ensure a consistent user experience. Another lesson was the need for
better history management. Specifically, when continuing a chat from a saved history,
saving it again would create a new entry instead of updating the existing one, leading to
unnecessary duplication and confusion for users. Finally, handling large inputs, such as
error-filled CSV files, highlighted the need to preprocess and streamline data before
sending it to the ChatGPT API to improve efficiency and reliability.

Future Work Recommendations

Given more time, we would focus on refining key areas of the prototype. Accessibility
features could be expanded to include a hotbar for quick toggles like high contrast, font
size adjustments, and text-to-speech options. Existing features, such as the contrast toggle,
could also be made more intuitive and user-friendly. The history feature would be
reworked so that continuing a chat from history updates the original session rather than
creating a new saved entry. This improvement would simplify session management and
enhance the user experience. Additionally, optimizing how large files are handled by
preprocessing data and splitting oversized requests would ensure smoother interactions
with the ChatGPT API.

Suggestions for Future Teams

Future teams can build upon these lessons by prioritizing session management,
accessibility, and data handling. Enhancing session management would allow seamless
transitions between saved and active chats, reducing redundancy and improving workflow.
Accessibility features could be tailored to user needs, ensuring the application serves a
broader audience. Finally, implementing intelligent preprocessing and error-checking
systems for data inputs would improve ChatGPT’s response accuracy and efficiency.
Regular user testing and feedback would further help refine these features and guide the
application’s evolution, ensuring a robust and user-friendly tool.

Bibliography 54

8 Bibliography

APPENDIX I: Design Files 55

APPENDICES

9 APPENDIX I: Design Files

Below we have various design files located in the MakerRepo link:
https://makerepo.com/andriusavenido/2111.companion-lms-accessibility-tool-by-companion-
dev-team-. The files pertain to older prototypes.

Table 3. Referenced Documents

Document

Name

Document Location and/or URL Issuance

Date

PD E.docx https://makerepo.com/andriusavenido/2111.companion-

lms-accessibility-tool-by-companion-dev-team-

2024-12-01

PD_B,C , and

D(1).docx

https://makerepo.com/andriusavenido/2111.companion-

lms-accessibility-tool-by-companion-dev-team-

2024-12-01

APPENDIX II: Other Appendices 56

10 APPENDIX II: Other Appendices

