


GNG2101

Design Project User and Product Manual

Companion Accessibility Tool

Submitted by:

Companion Dev Team, GNG2101B Group 1.5
Jonathan Soliman, 300345528
William Levesque, 300352375

Andrius Avenido, 300344515
Aidan Nikolaus, 300309124

Jacob Cearns, 300361219

December 1, 2024

University of Ottawa



Table of Contents

TaADIE Of CONLENLS ... .ottt ettt b ettt ettt s b et st et et e sbeeneesaeens il
List of Acronyms and GlOSSATY ........c.ceeiiiiiierieiiieiiierie et erite sttt stte st e e teeseeeebeenteessaeenseenseesnseens v
I INETOAUCTION ..ottt ettt ettt sttt et b et e it e nbeeatesae e e eaean 1
2 OVRIVICW .ttt ettt ettt ettt ettt e a e bt eat e e bt et e s ht et e e ateeb e emb e e bt e bt e it e nbe et e sbe et e eat e bt entes 3
2.1 CONVEINEIONS. c..ceuteeititieiesttete ettt et ettt eat e s bt et sat e bt s e ebe e bt eatesbeeatesbe e beeatesbeenseebeenteensenes 5
2.2 Cautions & WAITINES ...ccuveeiieiieeieeiteeeiieeteesteesteeteessaeeseesseessseeseesseessseesseessseasseesseesseens 5
Connection to MONZODB .......cc.coiiiiiiiiiee et sttt et s e seaeenne 5

3 GELING STATEERA ..euveeiieeiieiie ettt et ettt e et e et e e bt e et e e bt e e et e enbeenseeenbeebeeenbeenneennaeans 6
3.1  Configuration ConSIAEIAtIONS ........c.eeeuiieiieriierieeiieriieeeeesieesieeeteeseeesereeteesseesssesseesseeenne 9
3.2 User Access CONSIAETAtIONS ........coueeueriieriirieniieie sttt sttt ettt 10
3.3 Accessing/setting up the SYSteM........cceeviiiiiiiiiiiieieee e 11
3.4  System Organization & NaAVIZAtION ......cccueeruieeiiieriieeieeriienieeteeseeeeteesaeeseeeseesseesneeneees 12
3.5 EXIING the SYSIEM .oouuiiiiiiiiiiiiiiciieiiece ettt ettt ettt aee et e naeeenseennees 13

4 USING the SYSTEIM ..eoiuiiiiiiiiiiiietie ettt ste et e st e e be e bt essbeesbeesbeeeaseesaesnseenseennes 14
4.1  Companion Virtual ASSISTANL ..........c.eeruieriieiiieriieeieeieesie et estee e este et eebeeteeseeesseeneeas 14
411 File UPloading .....cccueeiiieiiieiieiieieeieeit ettt ettt st sbeeaee e 15
4.1.2  SavING CONVETSATIONS. ...cccuiiuiieiieriieeieeieertieeteesteesreeseesteessseeseesseeenseesseesseeseessns 16

4.2 Sidebar/Navbar for Page Navigation...........cccccueeriieiiiieeiieeciie e svee e saee e 17
4.2.1  TOZEIE EXPANSION ..ccuvviieiiiieeiiieeciie et eeieeeetee ettt e etee et eeeaeesaeeesaseeeaaeesnsaeesnseeennns 18

4.3 HISEOTY PAZE .eeiiiiiiiieeeeeee ettt ettt et e e e e e et e e nreeeraeeeraae e 18
4.3.1  ContiNUE CONVETSATION. .. ..eetiiauiiaiieniieeteeniie st eteeetteeteesueessbeebeesaeeenbeesseesaeeeseesaeas 19



4.3.2  DeElete COMVEISATION . ..ccevueeneeeeeeeeeeee e e e e e et e e e e e e e e e e e eeaeeaaeeeeeeeeeeaeeeaaaaeeeaarane 19

4.4 AccesSIDIIILY RESOUICES. .....uuiiiiiieeiieciiieciie ettt et e s ree e aeeeaaeeens 19
4.5 TREME SEINES ...eeeictiieiiieeiiieeiie et e eieeeeteeesteeetaeesbeeessbeeesaeessseeessseessseessseeessseesnsseenns 20
4.6 Login/ Sign Up FOIM c...oooiiiiiiiii ettt tee e s e seaeeeanee e 20
AT ADOUL PAZE ..ottt ettt et et e e et e e nreeeaaeeenaeens 21

5 TroubleShOOtiNg & SUPPOTT ...cc.uviiiiiiieiie ettt e e e e saveeeaaeesaeeesnneeens 23
5.1 Error Messages or BERaVIOTS .......c.cceciiiiiiieiiiieciiceiee ettt 23
5.2 Special ConSIAETAtIONS .....cuvieeiureeriieeeiieeeree ettt esteeeeteeestaeeeseeesseeessseessaeessseeessseesnsseenns 24
5.3 MAINTEINANCE ...ttt ettt ettt ettt ettt et et e et et esate et e e sbeesabe e bt e eaeeenbeesabeenbeeneas 24

BT N 11 0] 010 ) APPSRt 25

6  Product Documentation: The Final Prototype .........ccceceeeeiieiciiieiiieciieeeeeeeeeee e 26
6.1  Front-End (Website Client Side)........cceeevieiiiiiiiiieiiie ettt 30
6.1.1  BOM (Bill 0f MaAterialS) ........ccocuieiiiieiiieeeiee ettt e 31
6.1.2  EqQUIPMENT LISt .ccuiiiiiiieiiiiecie ettt e e e e e s e e e enaee e 31
6.1.3  Instructions/Design BreakdOWn..........ccceeviiieiiiiiiniiiiiiecee e 31

6.2  Back-End (Server S1d@).......ccoiiiiiiiieiieeieeete ettt s 43
6.2.1  BOM (Bill 0f MaterialS) .......cccecuiiiiiieiiieeeiee et e 44
6.2.2  EqQUIPMENT LISt .cciiiiiiieiiiie ettt et ettt e e e e e e e s e e snbeeenaee e 44
0.2.3  INSEIUCTIONS ...ttt ettt ettt ettt et e s ate et e e bt e esbeebeesaeeenbeenbeesaneans 45

6.3 Testing & Validation...........coovuieieiieeiiiieciie et eee e s e e seaeessaeeereeesnseeenes 51

7  Conclusions and Recommendations for Future Work ............coccoiiiiiiiiniiiceee, 53
LeSSONS LEANEA. ......eoiiiiiiiiiieiiee ettt st an 53
Future Work Recommendations ..............cocuieiuiiiiiiiiiniiiieeeeeeee e 53



Suggestions for Future Teams .........

8  Bibliography .......ccccocevvviiieiiieninnee,
APPENDICES ...,
9  APPENDIX I: Design Files.............

10  APPENDIX II: Other Appendices

v



List of Acronyms and Glossary

Table 1. Acronyms

Acronym Definition
Table 2. Glossary
Term Acronym Definition
User Interface | Ul The visual elements of an application
that users interact with, like buttons
and menus.
Application API A set of protocols that allows
Programming different software to communicate
Interface with each other.
Comma- CSv A file format used for storing tabular
Separated data, where each line represents a
Values row and columns are separated by
commas.




1 Introduction

This User and Product Manual (UPM) provides the information necessary for future users,
developers, and engineers to effectively use and view prototype documentation for Companion, an
accessibility-focused chatbot and resource website designed to assist professors and educators in
improving digital accessibility of course materials. Built with the following popular web
technologies such as MongoDB, Express.js, React.js, Node.js (MERN Web Stack), and utilizing
OpenAl Services, this tool combines accessibility resources with a powerful chatbot interface to
simplify the process of identifying, evaluating, and improving coursed content accessibility.

Key Assumptions made for this manual include:
1. Users have a basic understanding of web interfaces and technologies
2. Users possess working knowledge of Canvas Ally and are familiar with its role in evaluating
accessibility requirements
3. Professors and Educators may not have in-depth technical expertise, but aim to improve
accessibility compliance in their materials
4. Users understand OpenAl services and the role of the GPT-40 model

This manual serves the following purposes:
- Educate users on how to navigate and utilize Companion efficiently
- Clarify how to upload and analyze CSV files from Canvas Ally to address accessibility benchmarks
- Act as areference for core features and settings
- Providing detailed prototype documentation for Companion

This document is intended for:
- Professors and educators aiming to learn how to use Companion in length with Ally to empower
them with the ability to improve their course accessibility
- Developers and Technical teams involved in maintaining or enhancing Companion

Note: Familiarity with Canvas Ally and its role in accessibility assessments is essential for users
to effectively interact with Companion.

Security, Safety, and Privacy Considerations
Companion is designed with user security, safety, and privacy as priorities:
1. Data Security:
e Uploaded CSYV files are processed securely and stored temporarily for analysis.
Files are not stored permanently unless the user explicitly saves their data.
o Communication between the user’s browser and the server is encrypted via
HTTPS.
2. Privacy Protections:
o User interactions and chat histories are saved only with explicit consent and can be
deleted by the user at any time.
o The chatbot leverages OpenAl services, which comply with robust privacy
standards.

Introduction 1



3. Accessibility and Safety:
o Customizable themes ensure inclusivity for users with varying abilities.
o The chatbot interface is built to comply with accessibility standards, including
WCAG.
4. Authentication Security:
e User accounts are secured with strong authentication protocols, and sensitive data
(e.g., passwords) is hashed and stored safely.
By incorporating these measures, Companion ensures a safe, secure, and accessible experience for
all users while prioritizing privacy and data protection.

Introduction 2



2 Overview

Accessibility in digital education platforms is a growing concern, yet many tools provide
technical, overwhelming, or unclear feedback. Professors often struggle to interpret these
recommendations, leading to unaddressed accessibility gaps that affect students with disabilities.
This makes it harder for institutions to create inclusive learning environments, impacting student
engagement and equity. The Companion Accessibility Tool addresses this problem by simplifying
accessibility feedback, making it actionable, understandable, and easy to implement. Companion is
specifically made to help analyze Canvas Ally csv files. This helps educators ensure their materials
are accessible, improving the learning experience for all students.

Fundamental Needs of the User
1. Clarity: Professors need clear, concise, and actionable feedback on accessibility issues.

2. Efficiency: Users require quick and simple solutions to make their course materials
compliant without significant time investment.

3. Customization: A flexible tool that allows personalized themes and settings for ease of use,
such as font size or dark mode.

4. Integration: A system that can easily process data from existing accessibility programs like
Ally (in Canvas) without needing advanced technical expertise.

5. Interactive Support: A chatbot or interface that can provide real-time assistance and
answer questions about accessibility.

Screenshot of Final Prototype

= Companion Accessibility Tool
Companion

@ create new € Companion : tool for Ally

B History
Hi there! I'm Companion, your virtual assistant here to help you enhance your course content's accessibility. How can | help?

@ Learn about Accessibility

* Ask me about accessibility: Need tips or guidelines? Just ask!
@ Settings * Get personalized recommendations: Share your course details and layouts and I'll provide tailored advice.
« Feedback on your content: Upload your Ally prompted .csv files, and I'll analyze them for you, and let you know how you can improve

o)
~ andre your Canvas course.

Sign Out Simply type your question, request, or file below and let's get started on making your content more accessible together!

Q About Us Upload .csv file

Overview 3



What Differentiates Companion from Others

1.

Actionable Guidance: While other tools focus on technical details, Companion simplifies
feedback into practical steps.

Chat Interface: The chatbot provides an interactive, conversational way to understand and
fix accessibility issues.

Customization: Features like adjustable font size, themes, and saved conversations cater to
accessibility for the user themselves.

Multi-Functionality: Beyond just feedback, it serves as a hub with accessibility resources,
benchmarks, and interactive tools.

Focus on Education: Tailored specifically for educators in higher education to align with
their workflow and goals.

Key Features or Major Functions

CSV File Processing: Professors upload files from Ally or similar tools for detailed
feedback.

Chatbot Interface: Users receive feedback in a conversational format powered by GPT-4,
tuned for accessibility.

Customization Settings: Options for font size, themes, and dark mode to enhance usability.

Resources and Tools: A built-in library of accessibility guidelines, benchmarks, and
interactive components.

Conversation Saving: Users can save chat histories to refer to prior feedback.

System Architecture and User Access Mode

System Construction: The Companion Accessibility Tool is a web-based application built on
the MERN stack (MongoDB, Express.js, React, Node.js). The backend leverages the ChatGPT
API for processing conversational feedback.

User Access Mode:
e Professors interact with the system through a graphical user interface (GUI).
e CSYV file uploads allow accessibility data input.
o Chatbot feedback and settings are available via the website interface.

o Saved conversations are accessible when user is logged in

Overview 4



e Special Conditions: The system is designed to be fully accessible itself, adhering to WCAG
standards for inclusive design.

2.1 Conventions

<desc>: These tags are used throughout the document and pictures; they indicate
placeholders for information for the user to provide such as put your password here: <password>.

2.2 Cautions & Warnings
API Key for OpenAl Services

Users must obtain a valid API key from OpenAl to access the ChatGPT API. Without the
key, the backend functionality relying on the API will not work.
API keys are unique and must be kept secure to prevent unauthorized usage. Sharing your
key may result in excessive charges or service disruptions.

Action:

e Visit OpenAl's API Page to create an account and generate an API key.
e Store the key securely, typically in an environment file (.env), and avoid hardcoding it
directly into the application code.

Connection to MongoDB

The MongoDB database may require your IP address to be added to its access list to allow
proper backend functionality. Without this, the application will fail to connect to the
database.

Action:

e Ensure your IP address is whitelisted in the MongoDB cluster's network access settings.
This can be managed through the MongoDB Atlas interface or your self-hosted database
settings.

e Refer to the official MongoDB documentation for details on managing network access:
https://www.mongodb.com/docs/.

Overview 5



3 Getting started

The source code for Companion can be found at
https://github.com/andriusavenido/Companion_GNG2101. This section will walkthrough how to
run Companion locally. Important information, software requirements, and extra steps can be
found after this piece.

Downloading the Source Code

1. Navigate to https://github.com/andriusavenido/Companion_GNG2101 to view the source
code.

2. Click the green “Code” button and its local section. Make sure that HTTPS is selected.
Copy the link show. This will be the link to the source code that we will tell Git (view
below for more information) to download the resources from.

») Actions ] Projects [0 Wiki () Security |~ Insights 83 Settings

@ Companion_GNG2101 #u 2 Unpin| (S teeate

¥ main ~ s ©0Tag to f t Add file ~

@ AidanNiko u

(3 Clone
B8 client

HTTPS SSH  GitHub CLI
. server

- https://github.com/andriusavenido/Companion_6N (L]
] LICENSE t t

[ README.md

(%) Open with GitHub Desktop
() README &2 MIT license
[}) Download ZIP

Rutgers Companion Accessibility Tool for All
3. Create a folder on your computer (name it anything). Open Visual Studio Code and open
the folder. Click “Terminal” and open a new terminal and write in the line: git clone

Getting started 6



<link>. All of the source code should be downloaded.

) File Edit Selection View Go Run Terminal Help P TestFolder

@ EXPLORER ) Welcome X

/ OPEN EDITORS

Start Walkthroughs

X ) Welcome

 TESTFOLDER
Get Started with Java Deve]

Recent

10\Program..

\Programmi..

TERMINAL

PS C:\Users\thatg\Desktop\TestFolder> git clone https://github.com/andriusavenido/Companion_GNG2101.gitll

4. Open the inner folder inside the folder you are in so that the source code folder is the main
thing VS Code will be viewing as such you should see only two folders and some extra

v COMPANION_GNG2101 BEBELS&
> R client

> W server

% LICENSE
README.md

files. The website code is stored in
client, and the server code is stored in server. These two folders run two separate
applications that talk to each other. Both will be running when using the website.

5. We now need to download additional resources. The source code hosted on GitHub does
not contain a folder called “node modules” for both the client and server folders. This
folder contains important code that will help run the project (this code was created by
other open-source resources and can accumulate in large size; therefore, it is typically not
stored online).

6. Open your terminal once more. Write “cd client”. Your terminal is now looking at that
folder specifically. Write the command “npm install”, and the node modules will be

Getting started 7



COMPANION_GNG2101

Vv i client

TERMINAL
> ®
> & public PS C:\Users\thatg\Desktop\TestFolder\Companion_GNG2101> cd client
> src PS C:\Users\thatg\Desktop\TestFolder\Companion GNG2101\client> npm install
P4 eltionore added 309 packages, and audited 310 packages in 5s
¢ eslint.configjs
8§ indexhtml 108 packages are looking for funding
package-lockjson run “npm fund® for details
p_aCkageiJSL?” found @ vulnerabilities
¥ vite.configjs PS C:\Users\thatg\Desktop\TestFolder\Companion GNG2101\client> l
> W server
R LICENSE
downloaded. READVE Do
. 13 99 13
the same for the server. Open a new terminal, type “cd server” and run the command “npm
. LR}
install

7. Congratulations, you have now downloaded the source code on your computer locally.
You can review the code and make changes. Before running the website, we need to do
more important security configurations.

Configuring Specific Files

1. To run our server, we need to setup a file that will allow us to store our sensitive
information such as keys and passwords.
2. Open the server folder and create a file called “.env” at the top most directory area.

> B
>
Lo

» .gitignore

package-lock.json
package.json
R LICENSE

Your folder should look like this Helnlane

Getting started 8



3. Inthat .env file, write the following text.

o *

server > £& .env

RI= <your MongoDB Connection Url>

= <write a word of 20+ characters in length>
PENAIKEY= <your OpenAI API key>
PORT=3000

a. database URI: paste your MongoDB connection URL here

b. SECRET: here write any word over 20 characters. This is a component used to
hash passwords. It can be anything.

c. OPENAIKEY: paste your OpenAPI Key

d. PORT: write 3000.

4. Save the file (CTRL + S)

Congratulations! You have successfully downloaded the source code on to your local computer.

You are now ready to run and use Companion.

Running the source code can be found below.

3.1 Configuration Considerations

Important considerations and requirements should be acknowledged when trying to run Companion.
While you will interact with developer tools, no programming skills are required. Furthermore, keep
and password or key or link found when accessing these different sites very secure and private as
they maybe (and probably are) sensitive.

1. OpenAl API Key and Service

a.

Companion uses OpenAl’s services to access the GPT-40 Large Language Model to
power its chatbot

You will need to sign up for an OpenAl account and generate an API key. Payment
will be required to enable the key to have access to GPT-40. Can be found at
https://platform.openai.com/docs/overview

IMPORTANT: Keep this key private and secure, it is required for the chatbot to
work.

Getting started 9



2. MongoDB Atlas

a. Companion uses a cloud database to store information like user accounts and saved
chat histories.

b. MongoDB Atlas is a free, cloud-based database service that will be required to setup,
found at https://www.mongodb.com/products/platform/atlas-database

c. You’ll create an account and setup a “connection string” which tells Companion
where to find our database.

3. Git and Github

a. @it is atool used to download the Companion source code which is hosted on
GitHub. Download Git here: https://git-scm.com/

b. Expertise in Git is not required, installing and using simple commands as outlined
above is enough. Here is a resource:
https://docs.github.com/en/repositories/creating-and-managing-
repositories/cloning-a-repository

4. Node.js and Node Package Manager (NPM)

a. Node.js is a platform that allows Companion’s server code to run locally on your
computer.

b. Node package manager comes bundled with Node.js and is used to install
additional tools and resources with single simple commands. It will help you run
everything including the front-end (visual webpage) and back-end (server) on your
computer. https://nodejs.org/en/download/package-manager

5. Visual Studio Code (VS Code)

a. VS Code is a free and easy-to-use code editor that allows you to view and modify
the source code easily. You will use it to view and run the source code effectively
and make minor changes to specific config files (such as adding in your API key).

b. Beginner-friendly and great for managing the project:
https://code.visualstudio.com/download

6. A Modern Web Browser

a. Companion works through a website interface, so you will need a modern browser

like Google Chrom or Microsoft edge to use it.

3.2 User Access Considerations

The Rutgers Companion prototype is designed for diverse user groups: professors and
educators seeking to improve course material accessibility using Canvas Ally data; administrators
and accessibility specialists overseeing compliance and providing feedback; students and teaching
assistants assisting with content preparation; developers and technical support teams maintaining
the system; and accessibility advocates using the tool for training or evaluation. Access varies by

Getting started 10



role—professors and students need working knowledge of Canvas Ally, administrators may
require broader permissions, and developers need advanced access for debugging and updates. All
users require an OpenAl API key, authentication credentials, and a modern web browser.
Restrictions include limited access to sensitive data, demo-mode limitations for external
advocates, and adherence to privacy and security protocols.

3.3 Accessing/setting up the System
Running the Source Code
Running the source code is very simple and just requires a few commands.

1. Open a new terminal. Write “cd server” and then enter the command “npm start”. Your
server should be running

PS C:\Users\thatg\Desktop\Companion\Companion GNG2101> cd server
PS C:\Users\thatg\Desktop\Companion\Companion GNG2101\server> npm start

> server@l.0.0 start
> node src/server.js

Connected to MongoDB
Server is running on http://localhost:3000

2. Open another terminal (don’t close the server one). Write “cd client” and then enter the
command “npm run dev”. Your front end should now be running. Press the link and it
should direct you to the Companion webpage running locally on your computer.

PS C:\Users\thatg\Desktop\Companion\Companion GNG2101> cd client
PS C:\Users\thatg\Desktop\Companion\Companion GNG2101\client> npm run dev

> client@o.0.0 dev
> vite

Information on how to use Companion itself can be found in Section 4.

Getting started 11



3.4 System Organization & Navigation

Here is a quick explanation of our project setup. As explained, there are two main folders
for this project in the source code: client and server. The client and server software will be run
simultaneously, and the client will talk to the server when doing tasks such as talking to GPT-4o.
Client has all the website code and Server has all the server code:

Client Side: This is the part of the application that users interact with directly (what you see on
the screen).

- There are multiple pages used for navigation: Home — About — Accessibility — History
— Options.

- Page Navigation is controlled by a file called App. Other pages and systems of the client
side can call this to move pages directly.

- Each page has their own section for website design (what it looks like) and a section for
code logic (what the page will do).

- There are CSS files used to style the pages (like what color this button should be etc.)

- The top folder has different specific software-related configuration files

- There are multiple different folders and files used for more complex logic and processing
which is explained in more detail under prototype design.

Server Side: This part runs behind the scenes and handles things like saving data, processing
requests, and communicating with other services (like OpenAl).

- There is a main file called server. It contains the core logic and settings such as setting up
database connection etc.
- There are files called controllers. They are the managers of the server.
o Conversation Controller: Manages logic for saving and retrieving conversations
o User Controller: Manages user tasks such as logging in and registering.
- There are files called Models. They define how data is stored in the database such as a user
model which describes how things such as password should be stored.
- There are routes, that manage the HTTPS requests sent by the client.
- Finally, there are services tasked with specific tasks. Such as the OpenAl service file
which contains all related logic towards talking to GPT-40 (specific rules and prompts).

Getting started 12



3.5 Exiting the System

Turning off the locally run server is very simple. All you must do is exit/close your code
editor, VS Code, which will stop your system from running the software in the terminals.
MongoDB and OpenAl services run 24/7 so there is no requirement to close them.

Getting started 13



4 Using the System

The following sub-sections provide detailed step-by-step instructions on how to use the
various functions or features of the Companion Accessibility Tool Website.

4.1 Companion Virtual Assistant

The home page and landing page of the website features the companion virtual assistant. It
features a text input box where users can type in messages and an upload drop box where users
can upload their companion csv files.

= Companion Accessibility Tool

Companion

.
Oreate New € Companion : tool for Ally
History

Hi there! I'm Companion, your virtual assistant here to help you enhance your course content's accessibility. How can | help?

Learn about Accessibility
« Ask me about accessibility: Need tips or guidelines? Just ask!

Settings + Get personalized recommendations: Share your course details and layouts and I'll provide tailored advice.
« Feedback on your content: Upload your Ally prompted .csv files, and I'll analyze them for you, and let you know how you can improve

Login your Canvas course.

Simply type your question, request, or file below and let's get started on making your content more accessible together!

Upload .csv file

O Aboutus

Using the System 14



To begin, type in a message and press Enter. Companion will respond to your message.
Companion v1.0

y GPT-4i

hello companion

Hello! How can | assist you today with improving the accessibility of your course materials?

Upload .csv file

You can ask it anything
regarding to accessibility and it will respond effectively. Companion can remember the entire
conversation and what it analyzed.

4.1.1 File Uploading

To upload a file, simply press the upload csv file. A file window should prompt you to
select your specific file, press open and it should be saved on the Companion website. Now you
can ask Companion to analyze it. You can delete your file with the button or upload a new one to

override it.

Using the System 15



Companion v1.0

**LanguagePresence**: Missing language declaration, which helps screen readers choose the correct
pronunciation.

**Tagged**: Documents not properly tagged for accessibility, affecting navigation by screen readers.
**Title**: Missing or incorrect document titles.

**HtmlHasLang**: HTML files missing language attribute.

**HtmlHeadingsStart**: HTML files with headings that do not start at level one.

**HtmlTitle**: HTML files missing a title tag.

**HeadingsSequential**: Headings not in a logical order.

**HeadingsPresence**: Missing headings.

**Scanned**: Documents that are scanned images and not readable by screen readers.

If you need help addressing these issues or have specific questions, let me know!

ally-287650-...

4.1.2 Saving Conversations
When logged in, you can save the state of the current conversation by clicking the save

conversation button at the bottom of the page.

Using the System 16



Companion v1.0

Hello there give me 3 tips

Hello! Here are three tips to improve the accessibility of your course materials:

1. Use Descriptive Text for Links and Images: Ensure that all links and images have descriptive text. For links,
use meaningful text that explains the purpose of the link rather than generic phrases like "click here." For
images, provide alt text that describes the content and purpose of the image.

2. Ensure Text is Readable: Use high-contrast colors for text and background to ensure readability. Avoid using
color alone to convey meaning, as this can be difficult for color-blind students. Additionally, use a clear and
legible font size and style.

3. Provide Captions and Transcripts: For all audio and video content, provide captions and transcripts. This
ensures that students who are deaf or hard of hearing can access the material. It also benefits all students by
providing an alternative way to engage with the content.

If you have specific materials or feedback you'd like to discuss, feel free to let me know!

Upload csv file

Save Conversation

4.2 Sidebar/Navbar for Page Navigation

Users can look at the left of the webpage to see the Sidebar. They can click on any section

= Companion Accessibility Tool
D Companion

@ Create New

B History

@ Learn about Accessibility
@ Settings

ro\ SuperSuperS

Sign Out

to navigate to that page effectively.

Using the System 17



4.2.1 Toggle Expansion

Press the Hamburger Icon (3 horizontal lines stacked) on the side bar to close it. It can be
pressed again to open it.

3
©
I
®
@
2

4.3 History Page
The history page contains all the conversations that users have saved. They can scroll

through them using the scroll wheel if there is a lot. They can also hover each section.

= Companion Accessibility Tool .
History

[3 companion
B Create New

B History Certainly! Here are some brief accessibility tips

@ Learn about Accessibility

© settings
12/1/2024, 2:23:22 PM

2 Pprofessor1

: Continue conversation...
Sign Out

Based on the CSV file provided, here is an

analysi...

12/1/2024, 2:23:07 PM

Continue conversation... Delete

O Aboutus

Using the System 18



4.3.1 Continue Conversation
Press the Continue Conversation... link to continue the conversation. You will be redirected

to the chat interface with the conversation history selected.

4.3.2 Delete Conversation

Press the delete link on any conversation to delete it.

4.4 Accessibility Resources

The accessibility resources page provides users various links and resources to help them
with accessibility rules. The can select any of the bulleted links which will redirect upon mouse
press and can watch the video.

= Companion Accessibility Tool
(3 companion

& create New

Accessibility

@ History
@ Learn about Accessivilty Here are some valuable resources to learn more about the accessibility guidelines and standards that this tool follows:
 settings

2 Login . WCAG Guidelines

Section 508 Standards
ADA Design Standards

* Google Accessibility Fundamentals

avag Accessibilityand Aty @ »

Watch later  Share

Using the System 19



4.5 Theme Settings

The settings page allows users to select different themes for the website. They can click the menu,
and it will drop down three options: Default, Light, and High Contrast. They can select any one
and it will change the colors of the pages accordingly. Users can choose their preference.

= Companion Accessibility Tool
[3 companion

@ Create New

B History

@ Learn about Accessibility

© settings

2 Login

Theme: | Default

4.6 Login / Sign Up Form

The login/signup form is a simple, user-friendly feature that allows users to create an account
or log in to their existing account. It ensures secure access to the Companion Accessibility Tool,
allowing users to save conversation history. Users can input information into specific fields.

Using the System 20



= Companion Accessibility Tool

[3 companion

& createNew

@ History

@ Learn about Accessibility

© settings Login / SignUp form

o

2 Login

O Aboutus

4.7 About Page

= Companion Accessibility Tool
Companion

B Create New

B History

@ Learn about Accessibility This tool was designed and created by 5 University of Ottawa students. This tool aims to
@ X provide professors with specialized help to make their courses more accessible. We
SeiLrEs work with Ally LMS Tool Integration. Whether it's a CSV file or a simple question, this

o

~ Login tool can help!

As this tool uses OpenAl services, the data will be sent to their facilities. In turn, this
makes the service non-private, so make sure not to send any sensitive information. The
CSV files generated by Ally do not contain any information besides image names.

This chatbot will only answer questions related to course content, how to navigate to
make changes, and how to make the course more accessible. It will not be able to
answer any personal questions or questions that are not related to the course.

O aboutus

This is the about page where users can click on different sections to open up information about the
website. They can also view an email to contact the Companion Team.

Using the System 21



Using the System

22



S Troubleshooting & Support

5.1 Error Messages or Behaviors

Below are common error messages or behaviors a user may encounter, their likely causes, and
corrective actions:

Frontend Errors:

e "Network Error": Indicates connectivity issues between the client and server.
o Cause: Server downtime or client internet issues.
o Action: Check the internet connection. If the server is down, wait for notification
of resolution from support.
e UI Freezing or Non-responsive: The interface becomes unresponsive to user input.
o Cause: Rendering conflicts or excessive client-side data processing.
o Action: Refresh the page. If the issue persists, clear the browser cache or try a
different browser.

Backend Errors:

e "400 Bad Request" during Login: The request sent to the server was invalid.
o Cause: Missing or improperly formatted login credentials (e.g., empty email or
password fields).
o Action: Ensure all required fields are filled and formatted correctly before
resubmitting.
e "401 Unauthorized": User authentication failed.
o Cause: Invalid credentials or an expired token.
o Action: Verify login credentials. If using a token-based system, reauthenticate to
generate a new token.
e "500 Internal Server Error": General server-side failure.
o Cause: Unhandled exceptions in Node.js, MongoDB errors, or ChatGPT API
issues.
o Action: Report the issue to support with a timestamp and error details.
e "Database Connection Error": Failure to access MongoDB.
o Cause: MongoDB server is down or incorrect connection credentials.
o Action: Restart the database server. Verify database credentials in the environment
configuration file.

Troubleshooting & Support 23



ChatGPT API Errors:

5.2

5.3

e "API Key Invalid or Missing": Unable to connect to ChatGPT API.

o Cause: Incorrect or expired API key.

o Action: Verify and update the API key in the backend environment settings.
e "Rate Limit Exceeded": ChatGPT usage has exceeded the allowed limit.

o Cause: Excessive API calls in a short time frame.

o Action: Implement rate-limiting or wait for the limit to reset.

Special Considerations

- Ensure the backend server and MongoDB database are hosted on reliable platforms with
robust monitoring to minimize downtime.

- Monitor login flow and authentication token systems regularly to ensure no expiration or
validation errors.

- For ChatGPT API, monitor usage limits regularly and implement fallback mechanisms for
high-traffic scenarios (e.g., provide predefined responses).

- Maintain compatibility with assistive technologies to ensure a seamless experience for all
users.

Maintenance

Regular maintenance procedures include:

e Database Maintenance:
o Run weekly backups of the MongoDB database.
o Monitor database performance metrics and resolve slow queries.
e Codebase Maintenance:
o Review logs for recurring errors and address them promptly.
o Update dependencies (Node.js, React, etc.) monthly to patch security
vulnerabilities.
e ChatGPT API Maintenance:
o Periodically check for updates to the API documentation.
o Renew the API key before expiration.

Troubleshooting & Support 24



5.4 Support

For resolving issues or gaining assistance with the technologies used in the application, users and
developers can access the following resources:

JavaScript

e MDN Web Docs: Comprehensive documentation on JavaScript syntax, features, and
APIs.
o Website: https://developer.mozilla.org/en-US/docs/Web/JavaScript
e Stack Overflow: A community-driven platform for troubleshooting JavaScript-specific
erTors.
o Website: https://stackoverflow.com

MongoDB

e Official MongoDB Documentation: Covers topics from database setup to advanced
querying techniques.
o Website: https://www.mongodb.com/docs/
e MongoDB University: Offers free courses on database design and usage.
o Website: https://university.mongodb.com/

ChatGPT API

e OpenAl Documentation: Detailed guides on using the ChatGPT API, including examples
for integration.
o Website: https://platform.openai.com/docs/
e OpenAl Support: For troubleshooting API-related issues or account-specific queries.
o Contact: Use the support chat feature on https://platform.openai.com/

React

e React Documentation: Official resources for understanding React concepts and building
applications.
o Website: https://reactjs.org/docs/getting-started.html

Troubleshooting & Support 25



¢ FreeCodeCamp React Tutorials: Beginner-friendly tutorials and projects to enhance
understanding.
o Website: https://www.freecodecamp.org/learn/

Node.js

e Node.js Documentation: Offers guides on Node.js APIs and development best practices.
o Website: https://nodejs.org/en/docs/
e Node.js Slack Community: A platform for developers to discuss issues and share
solutions.
o Website: https://nodejs.org/en/get-involved/community/

General Programming Support

e GitHub Discussions: Check repositories for open discussions on related issues or features.
o Website: https://github.com/
e W3Schools: Beginner-friendly tutorials and examples for learning the core web
technologies.
o Website: https://www.w3schools.com/

These resources offer reliable support and guidance for troubleshooting and understanding the
tools and frameworks used in this application.

6 Product Documentation: The Final Prototype

This section highlights the specific documentation for the design and implementation of the
final prototype of the Companion Accessibility Tool. This section is specifically designed for
developers or engineers looking to recreate the Companion Accessibility Tool; thus, a level of web
design and development is assumed.

Here are the various technologies required and discussed:

e React: A JavaScript library used for building user interfaces. It simplifies the creation of
dynamic, reusable Ul components and ensures seamless user experiences through virtual
DOM updates. Contains its own subscript of HTML called JSX, allowing for more
developer control.

Product Documentation: The Final Prototype 26



e Node.js: A runtime environment that enables the execution of JavaScript code on the server
side. It is used to handle backend logic and integrate the frontend with the database and
APIs.

o npm: The Node Package Manager, used to manage dependencies and libraries required for
the project. It simplifies package installation, version control, and dependency management.

e MongoDB: A NoSQL database used to store and retrieve data for the application. It is highly
flexible and scalable, making it ideal for managing unstructured or semi-structured data.

o Express.js: A lightweight and flexible web application framework for Node.js. It is used to
build the backend server and manage API routes and middleware.

e HTML: The standard markup language for structuring the web application’s content. It
provides the foundational elements for building web pages.

e CSS: A styling language used to design and layout web pages. It ensures the application's
visual appearance is user-friendly and aligns with accessibility standards.

e Vite: A modern frontend build tool that is faster than traditional bundlers like Webpack. It
improves development speed with its efficient Hot Module Replacement (HMR) and
optimized production builds.

e HTTPS: The secure version of HTTP, used to ensure secure communication between the
web application and the server by encrypting data transfers.

e JavaScript: The primary programming language for creating interactive and dynamic web
functionalities in the frontend and backend.

Core Idea:

The Companion Accessibility Tool was planned with a range of complex features:

- Al Interactivity

- Chatbot Interface

- CSV File Uploads and Analysis

- Accessibility benchmarks and feedback
- Customizable User Settings

- User Authentication

- Saved Chat Histories

- Interactive Tools and Resources

To implement these features efficiently, it was essential to choose web technologies that
supported rapid development while ensuring scalability and reliability. To meet these needs, the
popular MERN stack (MongoDB, Express.js, React, and Node.js) was selected as the foundation
for the website's development. This choice provided several advantages:

Product Documentation: The Final Prototype 27



MongoDB: A NoSQL database that offers flexibility for managing and storing diverse
data formats, making it ideal for handling user data, saved conversations, and accessibility
configurations.

Express.js: A lightweight and robust web application framework for Node.js, simplifying
the creation of RESTful APIs for seamless communication between the frontend and
backend.

React: A powerful library for building dynamic user interfaces. Its component-based
architecture and virtual DOM capabilities enabled the creation of an interactive and
accessible user experience.

Node.js: A server-side runtime environment that allowed for fast and scalable backend
development, providing the foundation for integrating Al models and handling
authentication processes.

This combination of technologies not only streamlined the development process but also

ensured that the planned features could be implemented in a performant, maintainable, and user-
friendly manner.

Other Considerations

During the planning phase, various technologies and languages were considered:

Python: Known for its simplicity and extensive Al and machine learning libraries, Python
was a strong candidate for handling the Al interactivity features. However, integrating
Python with modern web frameworks would have added complexity to the stack.

PHP: A popular backend language for web development. While it provides robust server-
side capabilities, its traditional use in monolithic applications made it less suitable for a
modern, interactive, and component-based architecture.

Ruby on Rails: Its rapid prototyping capabilities and developer-friendly environment were
appealing. However, the lack of widespread adoption for Al and real-time interactivity
presented challenges.

Java: While powerful and scalable, Java's verbosity and heavier frameworks (e.g., Spring)
would have slowed development compared to lightweight, modern alternatives.

Ultimately, JavaScript was chosen as the single language for the entire stack. This decision

was driven by its ability to power both the frontend and backend seamlessly, enabling efficient data
exchange via JSON (JavaScript Object Notation) and reducing the need for context-switching
between different languages.

Product Documentation: The Final Prototype 28



The MERN stack (MongoDB, Express.js, React, and Node.js) was selected as the
foundation of development, complemented using OpenAl services for integrating Al features. This
stack provided:

e A unified development environment, streamlining communication between the frontend,
backend, and database.

e Native JSON support, enabling efficient data handling and API integration.

e Compatibility with modern tools and APIs, such as OpenAl services, for embedding Al
interactivity into the platform.

o Easy Website Testing and easier integration with HTML and CSS

Overall, sticking to JavaScript not only simplified the development process but also
empowered the use of JSON for data transmission and integration with cutting-edge services. This
ensured the Companion Accessibility Tool could be built rapidly while remaining scalable and
accessible.

Systems Diagram
Here is a detailed system interaction diagram to breakdown the sub systems of our project:

Figure #. System Interaction Diagram

Product Documentation: The Final Prototype 29



Farmattod Request

Request [ ULEL Backend Openal API

: . -+ Ths is uur custom mplemented server that wil
> 2 scaln o Thisisin the for r ; .
User :r“""l‘r'j';‘::r::‘:: i himiid gl ratsile &y asil 8 Dol Tunetien requests by the Dgerary mlb:tllﬂfll: e
« 5w Fle frarm Ally g o e e Trant Bnd ctients gy ks onis '“":;}
. gy . i « PUPEToNa 30 feqUESES Inchida Droaking down Coy pregranening incaethc W
guestions an - includmschathat, user ¢ any requests such : + This flown s to send chat
st J fise Infarmation, user sccount functianality, and
inquiries about optiens and Aataliing o 15 Tarmaating filtaring chathnt sequests ERORIEE M pnshe
ihi analk e i chathot. signing in, 2 : frod njud
.‘Ic:_assmlﬂrvnnd :1‘;;’::::;““ ani links to ‘I‘Hm*i:lmf .+ TIe ERBtOR fauEEs sant By ciznt misst be -v::-:uses'\u.m\lm language:
i corss ) ;ﬂméwm“m BN b farmatted and modifind into & custom oromt o
Roest DRV TON oo B ingtead af sending straight 1o OpanArs krge
caf SETVEr £ BNoW 19 u Ut U il b et adiarfactiu)

Technologies ks + Ensuens that the client can only request
. Information rekated to Ally and carvas
+ Dt walbiaite containg vanios web tachnologies )
Show reaponse to a0t 1iraea that om E3ed to Implemant the « Thigisis the Fur;'n of a hiddon server with api
¥hor wabiite design; routes that the front end can sand reguests to
« formatted chat bot reguests wil be sent to
E WTMLS, 35, and Javascript wil he our DOpendd's anline AP| for language modsh

mavin nguages/techmaiogy pow ering the x t by Dpersl wiil b

front end. This is mandatory for all wit sent ta the client

stk Technologies

+ Our backend neecs varicus technologies:

Js Nod s 1 sur main rantime for our
[IrSISe——
o e biackend server, It allows s bu uso
oy Aeect ja will be our Javascript framewark varicus framewnrks and ibraries &
L85>  Simpkines and abstracts our implesnant what wo noed fo Intemct wi
) implemgntation, halping to create LI ETieht nhd ar
Taster :

MorgaDB is our database of chore to
handie user account data

Developer Environments
+ To develop our varous systems of our software, we all ified 1 towark
together and access the vartous technologies
Wode Package Marager o hand our libeary snd
frammeworks used in devetapment. Required far
aur frortsnd and backend framewnrks |t

Wode)

Vil S0 G i and GRPub ) share ‘Q Chra e s cur main browses ko best website

auf main cods editar andtrach ur changes
1o code

sk ke sk sk sk s sk sk sk sfe sk sk sk sk sk sk s sk s sk sk sk sk sk sk sk st sk sk sk sk sk sk sk s sk s sk sk sk sk sk s sk sk sk sk sk s ke s sk sk sk sk sk sk sk sk skosk sk sk sk skeosk ko sk

IMPORTANT: Below is our break down of how the systems were designed. However, knowledge
and how to use specific technologies are not discussed since they are assumed that the user can use
and research them on their own, This is not a tutorial on the MERN stack, git, npm, or other
related technologies! A guide on building a house wouldn't teach you how to use a hammer or how
to mix cement, but would instead focus on the architectural plans, layout, and materials used to
construct the house.

sk ke sk sk sk s sk sk sk sfe sk sk sk sk sk sk s sk sk sk sk sk sk sk sk st sk sk sk sk sk sk sk s ke s sk sk sk sk sk s sk sk sk sk sk sk s ke sk sk sk sk sk sk sk s ke sk sk sk skosk sk sk sk skeosk skok sk

6.1 Front-End (Website Client Side)
This section breaks down the front-end implementation. All specific code and implementation can

be found at https://github.com/andriusavenido/Companion GNG2101/.

Product Documentation: The Final Prototype 30



6.1.1 BOM (Bill of Materials)

Item Name Units Qty Unit cost Extended Estimated cost

GPT-40 API Key API Tokens 1 $2.50 / 1M input tokens For one month of development testing, and assuming 50
$1.25 / 1M cached** input | requests a day (15 000 input and output tokens) is roughly
tokens $10.00 / 1M output | $0.1875 per day or $5.65 for one development month

tokens

MongoDB Atlas n/a al 0$ for small scale projects | 0S

Developer Tools n/a 1 0$ 0$

Total product cost (without taxes or shipping) $5.65 USD

Total product cost (including taxes and shipping) $6.48 + $0 Shipping USD

Note: This BOM is shared with the Back End Subsystem.

6.1.2 Equipment list
- Visual Studio Code
- Modern Browser
- React and JavaScript Front-End Technologies
- Vite Web Bundler

6.1.3 Instructions/Design Breakdown

Interface Design

The focus was to create a user interface that is friendly, simple, and accessible. The colors were
chosen and modified based on client wishes. Plain CSS was used to style the pages. Here are our
designs that can be used as reference to recreate the layouts:

Home Page and Navbar:

Product Documentation: The Final Prototype 31



Companion Accessibility Tool
D Companion
E’J Create New
B History
@ Learn about Acce
@ Settings
rQ\ Professor 1

Sign Out

O AboutUs

€ Companion : tool for Ally

Hi there! I'm Companion, your virtual assistant here to help you enhance your course content's accessibility. How can | help?

* Ask me about accessibility: Need tips or guidelines? Just ask!

+ Get personalized recommendations: Share your course details and layouts and I'll provide tailored advice.

» Feedback on your content: Upload your Ally prompted .csv files, and I'll analyze them for you, and let you know how you can improve
your Canvas course.

Simply type your question, request, or file below and let's get started on making your content more accessible together!

Upload .csv file

Home Page with Chat Started and file uploaded

Companion Accessi
D Companion
I'_.’ Create New
B History
@ Learn about Accessibility
@ Settings
rQ Professor1

Sign Out

O Aboutus

Accessibility Resource Page

Companion v1.0

y G

analyze this

Based on the CSV file provided, here is an analysis of the accessibility issues present in the course materials:

1. Common Accessibility Issues:

- Language Presence: Many PDF files are missing language specifications. Ensuring that the document language
is set is crucial for screen readers to interpret the content correctly.

- Tagged PDFs: A significant number of PDF files are not tagged. Tagging is essential for making PDFs accessible
as it provides a logical structure that screen readers can follow.

- Contrast Issues: Several files have contrast issues, which can make it difficult for users with visual
impairments to read the text. Ensuring sufficient contrast between text and background is important.

- Title Issues: Some PDFs lack proper titles. Titles help users understand the document's purpose and are
important for navigation, especially for users relying on assistive technologies.

2. Specific HTML Issues:

- Language Declaration: HTML files are missing language declarations. This is important for screen readers to
select the correct pronunciation and speech patterns.

- Headings Structure: Some HTML files do not start with appropriate headings, which can affect the document's

ebrintirn and naddadian

ally-287650-..

Product Documentation: The Final Prototype 32



= Companion Accessibility Tool
D Companion

@ create New

[]3 History

@ Learn about Accessibility

@ Settings

,Q Professor 1

Sign Out

O Aboutus

History Page

= Companion Accessibility Tool
Companion

LJ’ Create New

[B History

@ Learn about Accessibility

@ Settings

rQ\ Professor 1

Sign Out

O AboutUs

Theme Settings

Here are some valuable resource ore about the accessibility guidelines and standards that this tool follows:

WCAG Guidelines
Section 508 Standards
ADA Design Standards

Google Accessibility Fundamentals

ag Accessibifityand Ay © ~»

Watch later  Share

7]

Purpose: Learn how 1o use the Canvas Accessibiliy
ONA State  Checier and Ally tool to improve accessibity for your

Watch on @B Youlube ersity course content!

History

Certainly! Here are some brief accessibility tips

12/1/2024, 2:23:22 PM

Continue conversation... Delete

Based on the CSV file provided, here is an

analysi...

12/1/2024, 2:23:07 PM

Continue conversation... Delete

Product Documentation: The Final Prototype 33



= Companion Accessibility Tool
D Companion

@ Create New

B History

@ Learn about Accessibility

© settings

9\ Professor1

Sign Out

Theme: Default v

Default

Light
High Contrast

O Aboutus

User Login and Signup

= Companion Accessibility Tool
D Companion
@ Create New

Login / SignUp form

[B History

@ Learn about Accessibility

@ Settings
o]

~ Login

or Sign Up

O Aboutus

Product Documentation: The Final Prototype




= Companion Access
] Companion
LJ’ Create New

E History

@® Learn about Accessibility Register

@ Settings

rQ Login

O Aboutus

About Us Page

Companion Accessibility Tool
D Companion
@ Create New
B History

@ Learn about Accessibility This tool was designed and created by 5 University of Ottawa students. This tool aims to
provide professors with specialized help to make their courses more accessible. We
work with Ally LMS Tool Integration. Whether it's a CSV file or a simple question, this
tool can help!

© settings

rQ Login

As this tool uses OpenAl services, the data will be sent to their facilities. In turn, this
makes the service non-private, so make sure not to send any sensitive information. The
CSV files generated by Ally do not contain any information besides image names.

This chatbot will only answer questions related to course content, how to navigate to
make changes, and how to make the course more accessible. It will not be able to
answer any personal questions or questions that are not related to the course.

O Aboutus

Client Folder Structure

Product Documentation: The Final Prototype 35



Vv W client
> -
> ®
> & public
src
@ assets
® components
> W context
hooks
pages
App.css
# Appjsx
d index.css

# main,jsx

® .gitignore

® eslint.configjs
8§ indexhtml
package-lock.json

package.json

Ll This is the structure of our client folder in our project.

Pages

In our React application, each of our page components were structed in on pages folder. Each
page had a subfolder containing its own .JSX file and .module.css file. This allowed us to isolate
development for functionality and styling for each page. This also ensured any CSS would not

v #@ pages

v @& About

% About.jsx

d About.module.css
v @@ Accessibility

% Accessibility.jsx

d Accessibility.module.css
v @& History

% History.jsx

d History.module.css
Vv @ Home

% Home.jsx

d Home.module.css
v @& Login

% Login.jsx

d Login.module.css
v @ Options

% Options.jsx

d Options.module.css
Vv @l Redirects
% Page404.jsx

OVerlap toa different page’ d redirects.module.css

Navbar, Page Navigation, and Page Routing

Product Documentation: The Final Prototype 36



The router from the React Router Library was used for page navigation. This allowed for ease of
use by utilizing its custom “Link” tag in our Navbar component to redirect page navigation quickly.

Here is our App.jsx page where all the routing is setup. Some page routes are protected by user
n App() {

user} = useAuthContext();

<Router basename =
<div className=
<Navbar></Navbar>
<div className= >
<Routes>
<Route path
<Route path
<Route path
<Route path

element = {<Home/>}></Route>
element = {<About/>}></Route>
element = {user? <History/>:<RequireLogin/>}></Route>
element = {<Accessibility/>}></Route>
<Route path element = {<Login/>}></Route>
<Route path element = {<Options/>}></Route>
<Route path= element={<Page404/>} />
K|/Routes>
</div>
</div>
</Router>

(T T T TR TR

authentication.

Here is a section of our Navbar component that utilizes the Link property where if the user clicks
on it, they will navigate to a different page. The Navbar also utilized state variables to control if it
is expanded or not. The animation was done in CSS. ReactSVG icons from its named library were
used as well to have accessible icons for viewing.

<div
className={ ${isExpanded ? styles.
lisexpanded ? styles. =
¥
>
<div className={styles. >
<button className={styles. onClick={toggleBar}>
<ReactsSVG src={hamburger} className={styles. />
iseExpanded && <span>Companion Accessibility Tool</span>
</button>
</div>
<nav className={styles.
<ul>
<liﬂ
<Link to= className={styles.
<ReactsSVG src={chat} />
isexpanded && <span>Companion</span>
</Link>
</1i>
<1i>
<Link onClick={handleCreateNew]} className={styles.
<ReactsSVG src={create} />
isexpanded && <span>Create New</span>
</Link>
</A9>
<1li>
<Link to= className={styles.

React Context, History and Authentications

Product Documentation: The Final Prototype 37



Our application has various global states that need to be managed:

- History: When a user wants to continue their previous conversation on the history tab, the
application will need to temporarily store the conversation (stored in a list format, see Back-
end for more information) and send it to the Home page that contains the chat interface and
start it.

- User Authentication: We need to store the user object and send it to all components that
need it for validation such as the history page (which needs the user id to fetch the histories
of the user).

-  Theme: We need to store which theme was selected to send it to other Ul components to
change color.

Thus, we utilized React Context to handle these states. Here is our main.jsx file to wrap our
application with the contexts. The providers will send the information to anything inside of it (which
is the App that contains the entire application).

createRoot(document.getElementById ) .render(
<StrictMode>
<AuthContextProvider>
<HistoryContextProvider>
<OptionContextProvider>
<App />

</OptionContextProvider>
</HistoryContextProvider>
</AuthContextProvider>
</StrictMode>,

We also have our different context files that handle the higher level of state:
v @ context
AuthContext.jsx

HistoryContext.jsx

OptionsContext.jsx

Here is an example of the HistoryContext file:

Product Documentation: The Final Prototype 38



{ createContext, useContext, useState }

HistoryContext = createContext();

HistoryContextProvider= ({children})=>{
messageHistory, setMessageHistory] = useState

clearMessageHistory =
setMessageHistory([]);

<HistoryContext.Provider value={{messageHistory, setMessageHistory, clearMessageHistory}}>
children
</HistoryContext.Provider>);

useHistoryContext = () {
useContext (HistoryContext);

Any child components can access messageHistory and the setMessageHistory and
clearMessageHistory functions. An example is our chatHandler file (see hooks for explanation)
where when constructed, will load the messageHistory into its messages list that can be viewed.
Simply: user clicks continue conversation = Redirect to chat interface = initially load chat
handler - set messages from history context = finally load chat ui so user can view the past
messages in the chat ui.

messageHistory, clearMessageHistory} = useHistoryContext();

useEffect

setMessages(messageHistory);
clearMessageHistory();

>

Other contexts work in a similar principle where they contain some logic and state that are called
by other components. See the source code for the specific implementation.

React Hooks, Fetching Data, Streaming Responses

In our frontend, we must call the server to retrieve or send information. Therefore, we used 3
different React Hooks, separate files to abstract logic, that can be used in any component to do
specific server fetch and send operations:

- useHistoryManager: This hook is used to fetch conversations history of a user from the
server (where the server fetches it from database, see models in the back-end to see how

Product Documentation: The Final Prototype 39



these are structured). This hook also has functions that can be used to create or delete a
conversation. Here is a sample of the file.

{ useAuthContext }
{ usestate, useEffect }

useHistoryManager = () {
user} = useAuthContext();
conversationHistory, setConversationHistory]= useState

useEffect
(user) {
fetchConversations();

}

> [user]);

fetchConversations =

response = fetch(

${user.

(!response.ok) {
Error

data = response.json();
setConversationHistory(data);
error
console.error( , error);

When this hook is constructed, it does an
initial call, setting the conversationHistory of the specific user. This can be then used in
the Ul to show the information. Here is the History page that utilizes this hook:

conversationHistory, setConversationHistory,deleteConversation} = useHistoryManager();

handleDeletion = id

<div className={styles.
<header className={styles.
<h1>History</h1>
</headerp

<div className={styles. >
conversationHistory. p— 2

<p>No conversations found.</p>
)z
...conversationHistory
.sort((a, b Date(b.
.map((conversation
<Conversation
key={conversation. }

id={conversation. }

title={conversation. }

messages={conversation. }
timestamp={conversation. }

handleDelete={ > handleDeletion(conversation. id)}

It calls the history manager
and then formats all the information in its markup.

- useLoginSignup: This hook contains functions that delegate HTTPs POST methods to
sign or login the user into the server. It sends a request and then the server will respond
with the user object that was created or found.

- useChatHandler: This hook is the most crucial in the program, it handles the states of
chat messages sent by the server from our Al assistant Companion. This hook contains the

Product Documentation: The Final Prototype 40



functions for uploading a file, sending messages to the Al, and receiving messages from
the Al This hook also will manage the stream of response data that OpenAl sends and by
incrementally appending the new data into the messages list, the application will be able to
show a generative animation of the response.

sendMessage =
input.trim() ===

addMessage > input);

currentMessages = [...messages, {

formData = FormData();
formData.append , uploadedFile);
formData.append » JSON.stringify(currentMessages));

setResponseIsLoading

response = . 2 : : formData, });
(!response.ok) {
Error response.

1
1

addMessage( s );

reader = response. .getReader();
decoder = TextDecoder();

done = H

text="";

(!done){

value, :readerDone}= reader.read();
done = readerDone;
text += decoder.decode(value,

updatelastMessage(text);

¥
1

error

console.error(error : This is snippet of the file,
where the hook continuously updates the message array after calling for a Al response.
This hook is used in the chat interface and when the message list is updated, the Ul is
updated (thanks to React’s complex state updates). See source code for the specific
implementation.

Chat Interface, Auto Response Formatter

The Home page jsx file also handles the chat interface. When the user starts typing, state is updated
to switch the layout into the chat interface. This is the most complex page file since it calls multiple

Product Documentation: The Final Prototype 41



things such as the chat handler hook, authentication, message history, and even manages Ul updates.

Home = ({}) {

user}=useAuthContext
beganConversation, setBeganConversation] = useState

messages,
input,

setInput,
sendMessage,
handleFileUpload,
uploadedFile,
responselsLoading
= useChatHandler

messageHistory} = useHistoryContext
createConversation} = useHistoryManager

messagesEndRef = useRef
fileInputRef = useRef
saved, setSaved]=useState

Here we can see all the functions and properties the Home file is using from other areas in the
program. In addition, messages in the message list are shown in the U, and they are also parsed
into an auto formatter. This was added so that the raw text responses from the Al can be more
legible.

beganConversation && <div className={styles.
{messages.map((message
<div key = {message.id} className=

{ ${styles. ${message. : styles.
{parseMessageTolSX(message. }

Krdivh]

1
s

<div ref={messagesEndRef}></div>
</div>

Product Documentation: The Final Prototype 42



Our parseMessageToJSX can be seen here:

parseMessageTolSX(messageText) {
lines = messageText.split

lines.map((line, index

(line.trim(). === 0) {

<div key={index} className={styles.

(line.startsWith && line.endsWith

<strong key={index}>{line.slice(2, -2

(line.startsWith && line.endsWith
<em key={index}>{line.slice(1, -

(line.startsWith ) {
<ul key={index}><1i> line.slice

lineElements = [];

)

</strong>;

</1i></ul>;

parts = line.split(/( [~*]+ [\*[~*]+\*)/g);

parts.forEach((part, idx
part.startsWith( ) & part.endsWith(

)

lineElements.push(<strong key={idx}>{part.slice(2, -2)}</strong>)
part.startsWith( ) && part.endsWith( )

lineElements.push(<em key={idx}>{part.slice(1, -

lineElements.push(part);

L H

It

contains a lot of complex regex and formatting. Overall, all these components allow the application
to have one clean and effective chat interface for use.

6.2 Back-End (Server Side)

This section breaks down the back-end implementation. Note: MongoDB and OpenAl services
will be discussed, but setting up those services on other websites will not be discussed. That
should be researched by the users themselves since this guide has a level of assumption. All

specific code and implementation can be found at

https://github.com/andriusavenido/Companion GNG2101/.

Product Documentation: The Final Prototype

43



6.2.1 BOM (Bill of Materials)

Item Name

GPT-40 API Key

MongoDB Atlas

Developer Tools

Units

API Tokens

n/a

n/a

Qty

1

Total product cost (without taxes or shipping)

Total product cost (including taxes and shipping)

Unit cost

$2.50 / 1M input tokens
$1.25 / 1M cached** input
tokens $10.00 / 1M output

tokens

0$ for small scale projects

03

Extended Estimated cost

For one month of development testing, and assuming 50
requests a day (15 000 input and output tokens) is roughly

$0.1875 per day or $5.65 for one development month

0$
$5.65 USD

$6.48 + $0 Shipping USD

Note: This BOM is shared with the Front-End subsystem

6.2.2 Equipment list

- Node.js

- Mongoose
- MongoDB

- OpenAl API

- Visual Studio Code
- Postman (for testing)
- Express.js

- NPM, Nodemon

Product Documentation: The Final Prototype

44



6.2.3 Instructions

Our server is much simpler than the Front-End, however it is still quite important and complex.

v & server

controllers
middleware
models
routes
§ services
server.js
WeblnfromationGuidelinesUSA.txt

» .gitignore

package-lock.json
package.json
R LICENSE
README.md

We organized our server folder into different sections:
Express and Routing

Our server is build using the Express framework which allows us to create a web server with ease
and have it handled all the specific implementations. The server is run from one file called
server.js that utilizes different things from different areas of the project.

Product Documentation: The Final Prototype 45



require( ).config();
express = require(
mongoose = require(
userRoutes = require(
conversationRoutes = require(
openaiRoutes = require(
app = express();
database_URI = process.

app.use(express.json());
mongoose. connect(database_URI)
.then(
console.log

PORT = process. .PORT |
app.listen(PORT, () => {
console.log
1) .
J/a
)
.catch(err
console.error

)s

use((req,

» userRoutes);
, conversationRoutes);
, openaiRoutes);

- dotenv, is used to handle our environment file (that contains keys and passwords)

- express/app runs the server.

- We import different routes that are used to handle the different HTTPs calls that can be
made to this server from the client. One used for users, conversations, and OpenAl calls.

- Mongoose is a library used to connect to the MongoDB database

MongoDB, Mongoose, and Models
As seen above, we utilize MongoDB and Mongoose to handle database connections. We store

both conversations and user accounts in the database and define the information of each in the
following models:

Product Documentation: The Final Prototype 46



conversationSchema = new Schema (
: Schema = mongoose.
: Schema. . 5

>

userSchema = new Schema(

: String,

i€,

: String,

B

(g
L

: Number,
: String,)| . String,

>

¢ String,
: )

: String,

HTTPS Controllers

v &8 controllers

JS conversationController.js

JS userController.js

i ddio . We use two different controller files that contain all
the logic used for the conversations and user HTTPs routes. These controllers contain logic for
talking to the database (creating, deleting, etc.). See source code for specific implementation.

Authentication

Our server also handles specific authentication for user login and signups. We utilize JWT to
handle tokens for authentication with the front end to ensure our data is encrypted. We also use
encryption libraries to hash passwords securely:

Product Documentation: The Final Prototype 47



bcrypt.genSalt(12);
bcrypt.hash(password, salt);

his.create({email, username,

See source code for specific implementation. See PD E (in design files) for more details as well.
CSV File Reader

We have a file that aggregates the data read from a CSV file. The files are passed through our
express = require(
multer = require(
router = express.Router();

getOpenAIResponse } = require(
csvTolson } = require(

{
s
1

storage = multer.memoryStorage();
upload = multer( : storage });

router.post( , upload.single
file = req.

csvISON
(file){
csvISON csvTolson(file.

OpenAl route as such: where we
use the library, multer, to handle the storage of the file. This file is then sent to the file reader to be

aggregated.

Product Documentation: The Final Prototype 48



csvTolson(buffer) {
Promise((resolve, reject
results = [];
parser = parse(buffer,

)s
parser.on( , (row

errors = Object.keys(row).filter(key row[key] === && key !==
errors. >
results.push(
1 row
I row
I row
I row
. errors

)

parser.on(
resolve(results);

)

parser.on(
reject(error);

)

parser.write(buffer);
parser.end();

This CSV reader is specifically
tailored towards the CSV files outputted/generated by Ally.

OpenAl Service

The OpenAl Service file is the most crucial file in the server. It is accessed through a distinct
HTTPs route and handles all logic pertaining to communicating with the OpenAl API.

router.post( , upload.single( y req, res)
file = req.

CSVISON
(file){
CcSVISON ) csvToJson(file.

parsedMessages = JSON.parse(req. - )5
messages = convertMessagesToGPTRoles(parsedMessages);

res.setHeader( 5 )5
getOpenAIResponse(messages, CSVISON,res);

error

console.error(error);
res.status( )-Json(

This is the route for the Al service
that the front end will call. In the service file we have two functions with our custom engineered

Product Documentation: The Final Prototype 49



prompt that contains the Companion Al personality and rules. This is the prompt that is sent
initially to the OpenAl API at every call.

generateCompanionPromptWithCSv = (csvData)

generateCompanionPrompt =

Finally, we have the main function in the service that calls the API. We chose to get the responses
in streamed chunks so that the responses would come faster and allow us to have a generative
effect in the frontend.

getOpenAIResponse = (messages, cSvISON, res) {

prompt =
IcsvISON
prompt=generateCompanionPrompt();

prompt= generateCompanionPromptWithCSV(csvISON);
response = openai. . .create({

: : prompt },
...messages,

chunk response
newText= chunk. [e].

res.write(newText);

Summary of the Cycle: Front end calls with message = go to openai route = go to openai service
- receive OpenAl streamed response = stream response continuously to front-end.

Product Documentation: The Final Prototype 50



6.3 Testing & Validation

Testing was done using various tools such as Vite, web browsers, Postman, and external

users to test various metrics. Note: ChatGPT was used to format our table below:

Expected Test Actual
Test Case Metric Value Description | Result Pass/Fail
Test that a
user can
successfully
log in with
correct
username
100% and 100%
successful password successful
logins with and receive a | logins with
1. User Authentication | valid valid JWT valid
Authentication | Success Rate | credentials token. credentials Pass
Measure how
long it takes
for the
chatbot to Average
2. Chat Average respond after | response
Response Response sending a time: 1.5
Time Time (Latency) | < 2 seconds | message. seconds Pass
Test that a
valid CSV file
uploads
100% of correctly and | 100% of
valid CSV is parsed into | valid CSV
files are structured files
3. CSV File File Upload processed data without | processed
Upload Success Rate | successfully | errors. successfully | Pass
Product Documentation: The Final Prototype 51




Test that

users can
switch
between
100% of light and 100%
users can dark themes, | success rate
toggle and the for theme
4. Theme between change toggle,
Switching Theme Toggle | light and persists after | persists after
(Light/Dark) Success Rate | dark modes | page reload. | reload Pass
Test that all
chat content,
buttons, and
100% of chat | navigation
5. Accessibility content is elements are | 100%
Features Accessibility accessible via | properly read | compliance
(Screen Compliance screen by screen with screen
Reader) (%) readers readers. readers Pass
Test that any
failed
requests to
the OpenAl
APl return a
100% of meaningful
errors are error All errors
caught and message returned
6. Error appropriate | without appropriate
Handling in Error Handling | messages crashing the | error
Chatbot Success Rate | displayed system. messages Pass

Product Documentation: The Final Prototype

52




7 Conclusions and Recommendations for Future Work

Lessons Learned

Throughout the development process, we identified several areas for improvement that
will guide future iterations. One key lesson was the importance of creating a responsive
user interface that adapts seamlessly to different screen sizes. Challenges like unnecessary
scrollbars or overlapping elements underscored the need for thorough testing across
multiple devices to ensure a consistent user experience. Another lesson was the need for
better history management. Specifically, when continuing a chat from a saved history,
saving it again would create a new entry instead of updating the existing one, leading to
unnecessary duplication and confusion for users. Finally, handling large inputs, such as
error-filled CSV files, highlighted the need to preprocess and streamline data before
sending it to the ChatGPT API to improve efficiency and reliability.

Future Work Recommendations

Given more time, we would focus on refining key areas of the prototype. Accessibility
features could be expanded to include a hotbar for quick toggles like high contrast, font
size adjustments, and text-to-speech options. Existing features, such as the contrast toggle,
could also be made more intuitive and user-friendly. The history feature would be
reworked so that continuing a chat from history updates the original session rather than
creating a new saved entry. This improvement would simplify session management and
enhance the user experience. Additionally, optimizing how large files are handled by
preprocessing data and splitting oversized requests would ensure smoother interactions
with the ChatGPT APIL

Suggestions for Future Teams

Future teams can build upon these lessons by prioritizing session management,
accessibility, and data handling. Enhancing session management would allow seamless
transitions between saved and active chats, reducing redundancy and improving workflow.
Accessibility features could be tailored to user needs, ensuring the application serves a
broader audience. Finally, implementing intelligent preprocessing and error-checking
systems for data inputs would improve ChatGPT’s response accuracy and efficiency.
Regular user testing and feedback would further help refine these features and guide the
application’s evolution, ensuring a robust and user-friendly tool.

Conclusions and Recommendations for Future Work 53



8 Bibliography

Bibliography

54



APPENDICES
9 APPENDIX I: Design Files

Below we have various design files located in the MakerRepo link:
https://makerepo.com/andriusavenido/2111.companion-lms-accessibility-tool-by-companion-

dev-team-. The files pertain to older prototypes.
Table 3. Referenced Documents

Document Document Location and/or URL Issuance

Name Date

PD E.docx https://makerepo.com/andriusavenido/2111.companion- | 2024-12-01

Ims-accessibility-tool-by-companion-dev-team-

PD B,C,and | https://makerepo.com/andriusavenido/2111.companion- | 2024-12-01

D(1).docx Ims-accessibility-tool-by-companion-dev-team-

APPENDIX I: Design Files 55



10 APPENDIX II: Other Appendices

APPENDIX II: Other Appendices

56



