Prototype 3

The prototype three is constructed off of the second prototype. For prototype three
our team has added movement for when the polar bear gets close to the animals
causing them to run away. Additionally, we still had to fix some of the problems
previously such as the animals moving in one straight line and not in random
directions. We also added the hunger and stamina system to help immerse the
player in the VR simulation. We also have added the second scene of the simulation
of the present that the polar bear will be.

This was obtained by each group member going off and doing their parts and then

coming together at the end of the week to add them together. This is done by using a
USB and sticking it into the main laptop that we will be working on.

Code for hunger system:

using
using UnityEngine;

using UnityEngine.Events;
survivlemanager : MonoBehaviour

ader ("Hunger") |

[SerializeField] _maxHunger = ;

[SerializeField] _hungerDepletionRate =

_currentHunger;

HungerPercent => currentHunger / maxHunger;

_maxStamina = 2
_staminaDepletionRate

__staminaRechargeRate =

[SerializeField] __staminaRechargeDelay =
_currentStamina;
_currentStaminaDelayCounter;

staminaPercent => currentStamina / maxStamina;

[Header ("player References")]

[SerializeField] StarterAssetsInputs playerInput;

UnityAction OnPlayerDied;

Start ()

_currentHunger = maxHunger;

_currentStamina = maxStamina;

Update ()

_currentHunger -= hungerDepletionRate * Time.deltaTime;

if (_currentHunger <=)
{

OnPlayerDied?.Invoke () ;
currentHunger = 7

}

if (_ playerInput.sprint)
{
_currentStamina -= staminaDepletionRate * Time.deltaTime;

_currentStaminaDelayCounter = ;

if (! playerInput.sprint && currentStamina < maxStamina)

{

if (_currentStaminaDelayCounter < staminaRechargeDelay)

_currentStaminaDelayCounter += Time.deltaTime;

if (_currentStaminaDelayCounter >= staminaRechargeDelay)
{

_currentStamina += staminaRechargeRate * Time.deltaTime;

if (_currentStamina > maxStamina) currentStamina =

maxStamina;

}

ReplenishHungerThirst (hungerAmount)

currentHunger += hungerAmount;

if (currentHunger > maxHunger) currentHunger = maxHunger;

Code for moving:

System.Collections;
System.Collections.Generic;

UnityEngine;

[RequireComponent ((CharacterController))]

FPSController : MonoBehaviour

Camera playerCamera;
walkSpeed
runSpeed =
JjumpPower

gravity =

lookSpeed
lookXLimit

Vector3 moveDirection = Vector3.zero;

rotationX = ;

CharacterController characterController;
Start ()

characterController = GetComponent<CharacterController> ()
Cursor.lockState = CursorLockMode.Locked;

Cursor.visible = g

Handles Movment
Vector3 forward =
transform.TransformDirection (Vector3.forward) ;

Vector3 right = transform.TransformDirection (Vector3.right) ;

isRunning = Input.GetKey (KeyCode.LeftShift) ;
curSpeedX = canMove ? (isRunning ? runSpeed : walkSpeed)
* Input.GetAxis ("Vertical") : ;

curSpeedY = canMove ? (isRunning ? runSpeed : walkSpeed)

* Input.GetAxis ("Horizontal") : 9

movementDirectionY = moveDirection.y;

moveDirection = (forward curSpeedX) + (right * curSpeedY);

Handles Jumping
if (Input.GetButton ("Jump") && canMove &&
characterController.isGrounded)

{

moveDirection.y JjumpPower;

moveDirection.y movementDirectionY;

if (!characterController.isGrounded)

{

moveDirection.y -= gravity * Time.deltaTime;

Handles Rotation

characterController.Move (moveDirection * Time.deltaTime) ;

if (canMove)

{

rotationX += -Input.GetAxis ("Mouse Y") * lookSpeed;

rotationX = Mathf.Clamp (rotationX, -lookXLimit,

lookXLimit) ;
playerCamera.transform.localRotation

Quaternion.Euler (rotationX, 0) o
transform.rotation *= Quaternion.Euler (,

Input.GetAxis ("Mouse X") * lookSpeed,) £
}

Prototyping Test Results:

Number

Test Description

Results

1

Hunger and
stamina
functionality

After writhing in the
code we had to
make the hunger
drain a lot slower to
make it fit in the
time frame of the
simulation. We also
had to make the
stamina rise slower
so that the player
isn't always
sprinting. Other
than that the
results came back
positive

Movement of ai

When adding in the
movement of the Al
at first the animals
were running in
straight lines. But
after a few
modifications, they
can now go in
different directions
without hitting
objects. Animations
are attached to the
animals to make it
more immersive.

Adding in the

When adding in a

second scene second scene it
wasn't too bad we
just had to add in
less ice as well as
make it accurate to
today's standard.

Feedback:

Feedback from the game was positive such as liking how we
incorporated the hunger and stamina mechanics for the polar
bear. We were also asked how we could chase the scenes from
scene one to scene two. We were thinking about using a clock
to show how the time changes but right now in our state of work
we might just have to add in a text saying so and so years later.

