
Prototype 3  
 
The prototype three is constructed off of the second prototype. For prototype three 
our team has added movement for when the polar bear gets close to the animals 
causing them to run away. Additionally, we still had to fix some of the problems 
previously such as the animals moving in one straight line and not in random 
directions. We also added the hunger and stamina system to help immerse the 
player in the VR simulation. We also have added the second scene of the simulation 
of the present that the polar bear will be.  
 
This was obtained by each group member going off and doing their parts and then 
coming together at the end of the week to add them together. This is done by using a 
USB and sticking it into the main laptop that we will be working on.  
  
 
 
 
Code for hunger system:  
 
 
using System; 

using System.Collections; 

using System.Collections.Generic; 

using StarterAssets; 

using UnityEngine; 

using UnityEngine.Events; 

 

public class survivlemanager : MonoBehaviour 

{ 

    [Header("Hunger")] 

    [SerializeField] private float _maxHunger = 100f; 

    [SerializeField] private float _hungerDepletionRate = 1f; 

    private float _currentHunger; 

  

 

    public float HungerPercent => _currentHunger / _maxHunger; 

 

 

    [Header("Stamina")] 

    [SerializeField] private float _maxStamina = 100f; 

    [SerializeField] private float _staminaDepletionRate = 1f; 

    [SerializeField] private float _staminaRechargeRate = 2f; 



    [SerializeField] private float _staminaRechargeDelay = 1f; 

    private float _currentStamina; 

    private float _currentStaminaDelayCounter; 

    public float staminaPercent => _currentStamina / _maxStamina; 

 

    [Header("player References")] 

    [SerializeField] private StarterAssetsInputs _playerInput; 

 

    public static UnityAction OnPlayerDied; 

 

 

    private void Start() 

    { 

        _currentHunger = _maxHunger; 

        

        _currentStamina = _maxStamina; 

    } 

 

 

 

    private void Update() 

    { 

        _currentHunger -= _hungerDepletionRate * Time.deltaTime; 

        

        if(_currentHunger <= 0) 

        { 

        OnPlayerDied?.Invoke(); 

        _currentHunger = 0; 

        } 

 

        if(_playerInput.sprint) 

        { 

            _currentStamina -= _staminaDepletionRate * Time.deltaTime; 

            _currentStaminaDelayCounter = 0; 

        } 

 

    

    

    if(!_playerInput.sprint && _currentStamina < _maxStamina) 

    { 

        if (_currentStaminaDelayCounter < _staminaRechargeDelay) 

            _currentStaminaDelayCounter += Time.deltaTime; 

 



        if (_currentStaminaDelayCounter >= _staminaRechargeDelay) 

        { 

            _currentStamina += _staminaRechargeRate * Time.deltaTime; 

 

        if (_currentStamina > _maxStamina) _currentStamina = 

_maxStamina; 

        } 

    } 

    } 

    public void ReplenishHungerThirst(float hungerAmount) 

    { 

        _currentHunger += hungerAmount; 

        

 

        if (_currentHunger > _maxHunger)  _currentHunger = _maxHunger; 

        

    

    } 

 

} 

 

 
 
Code for moving:  
 
using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

  

[RequireComponent(typeof(CharacterController))] 

public class FPSController : MonoBehaviour 

{ 

    public Camera playerCamera; 

    public float walkSpeed = 6f; 

    public float runSpeed = 12f; 

    public float jumpPower = 7f; 

    public float gravity = 10f; 

  

  

    public float lookSpeed = 2f; 

    public float lookXLimit = 45f; 

  



  

    Vector3 moveDirection = Vector3.zero; 

    float rotationX = 0; 

  

    public bool canMove = true; 

  

    

    CharacterController characterController; 

    void Start() 

    { 

        characterController = GetComponent<CharacterController>(); 

        Cursor.lockState = CursorLockMode.Locked; 

        Cursor.visible = false; 

    } 

  

    void Update() 

    { 

  

        #region Handles Movment 

        Vector3 forward = 

transform.TransformDirection(Vector3.forward); 

        Vector3 right = transform.TransformDirection(Vector3.right); 

  

        // Press Left Shift to run 

        bool isRunning = Input.GetKey(KeyCode.LeftShift); 

        float curSpeedX = canMove ? (isRunning ? runSpeed : walkSpeed) 

* Input.GetAxis("Vertical") : 0; 

        float curSpeedY = canMove ? (isRunning ? runSpeed : walkSpeed) 

* Input.GetAxis("Horizontal") : 0; 

        float movementDirectionY = moveDirection.y; 

        moveDirection = (forward * curSpeedX) + (right * curSpeedY); 

  

        #endregion 

  

        #region Handles Jumping 

        if (Input.GetButton("Jump") && canMove && 

characterController.isGrounded) 

        { 

            moveDirection.y = jumpPower; 

        } 

        else 

        { 

            moveDirection.y = movementDirectionY; 



        } 

  

        if (!characterController.isGrounded) 

        { 

            moveDirection.y -= gravity * Time.deltaTime; 

        } 

  

        #endregion 

  

        #region Handles Rotation 

        characterController.Move(moveDirection * Time.deltaTime); 

  

        if (canMove) 

        { 

            rotationX += -Input.GetAxis("Mouse Y") * lookSpeed; 

            rotationX = Mathf.Clamp(rotationX, -lookXLimit, 

lookXLimit); 

            playerCamera.transform.localRotation = 

Quaternion.Euler(rotationX, 0, 0); 

            transform.rotation *= Quaternion.Euler(0, 

Input.GetAxis("Mouse X") * lookSpeed, 0); 

        } 

  

        #endregion 

    } 

} 

 

 
 
 
 
 
 
 
 
 
 
 
 



Prototyping Test Results: 
 
 

Number  Test Description  Results  

1 Hunger and 
stamina 
functionality   

After writhing in the 
code we had to 
make the hunger 
drain a lot slower to 
make it fit in the 
time frame of the 
simulation. We also 
had to make the 
stamina rise slower 
so that the player 
isn't always 
sprinting. Other 
than that the 
results came back 
positive  

2 Movement of ai  When adding in the 
movement of the AI 
at first the animals 
were running in 
straight lines. But 
after a few 
modifications, they 
can now go in 
different directions 
without hitting 
objects. Animations 
are attached to the 
animals to make it 
more immersive.  

3 Adding in the When adding in a 



second scene  second scene it 
wasn't too bad we 
just had to add in 
less ice as well as 
make it accurate to 
today's standard.  

 
 
 
 
 
 
 
 
 
 
 
Feedback:  
 
Feedback from the game was positive such as liking how we 
incorporated the hunger and stamina mechanics for the polar 
bear. We were also asked how we could chase the scenes from 
scene one to scene two. We were thinking about using a clock 
to show how the time changes but right now in our state of work 
we might just have to add in a text saying so and so years later.  


