
Project Deliverable F

Deliverable F: Prototype I and Customer Feedback

November 4th, 2021

Group 18: Calum Avon, Poula Rezkalla, and Ashley Larocque

Abstract

The purpose of this deliverable is to document the first stage of prototyping, to allow for the planning and testing of future prototypes. This includes detailed images of the prototype, documenting the prototyping test plan, analyzing the results obtained from testing the prototype, and identifying stopping criteria. Customer feedback will be gathered and considered to update the detailed design and target specifications for future prototypes.

Objectives	4
Prototype I: Detailed Images	4
Prototype I - Testing	7
Temperature Sensor Testing	7
Accelerometer Testing	9
Motion Sensor Testing	11
Carbon Monoxide Sensor Testing	13
Speaker Testing	14
Customer Feedback	15
Connectivity Testing	15
Carbon Monoxide sensor testing	15
Installation Testing	15
Sensors in Union	15
Updated Bills of Materials	16
Prototype II - Test Plan	16
Objective:	16
Procedure:	17
Stopping Criteria:	17
Conclusion	17

[bookmark: _8rwrc6ouf1]Objectives
For today’s test, we will be conducting some simulations and analyses to see how our product will respond to the amount of CO gas present in a room of 21.5 degrees celsius and outside in a temperature of 7 degrees celsius. Also, we will be testing the efficacy of our motion sensor.

[bookmark: _gsixz2cevl1]Prototype I: Detailed Images

[image:]
Figure 1: PIR motion sensor and the Arduino
[image:]
Figure 2: Temperature sensor and the Arduino circuit

[image:]
Figure 3: Speakers and the Arduino circuit

[image:]
Figure 4: ESP32 BLE

[bookmark: _2z1gm5wcwja0]Prototype I - Testing
[bookmark: _3n7cmclklhx3]Temperature Sensor Testing
[image:]
Figure 5: Temperature sensor code in the Arduino IDE
[image:]
Figure 6: Temperature sensor readings inside an apartment at 21.5 degrees celsius
[image:]
Figure 7: Temperature sensor readings outside in 7 degrees celsius weather

The results obtained in the initial testing of the temperature sensor resulted in much higher readings than what was expected. The tests were conducted in a room that was 21.5 degrees celsius, and the sensor was reading values of 137.01 degrees celsius. Next, testing was conducted outside where it was approximately 7 degrees celsius, and the sensor was reading values of -29.00 degrees celsius. These values are very far outside the margin of acceptable error thus further testing must be conducted.

[bookmark: _u5mr2goxg0ju]

[bookmark: _onal5ckx4ih0]Accelerometer Testing

[image:]
[image:]
Figure 8: Accelerometer code in the Arduino IDE

[image:]
Figure 9: Accelerometer readings when the system is in motion

[image:]
Figure 10: Accelerometer readings when the system is at rest

The initial testing conducted with the accelerometer consisted of testing while the system was at rest and while the system was in motion. The results of this test were successful, the values were consistent when the system was at rest and they varied when the system was in motion, as expected.

[bookmark: _knxn7lsmnl1c]
[bookmark: _vy8ax2mhi4rr]Motion Sensor Testing

[image:]
Figure 11: Motion sensor code in the Arduino IDE

[image:]
Figure 12: Serial Monitor when the sensor was unobstructed

[image:]
Figure 13: Serial monitor when the sensor view was obstructed

The initial testing of the motion sensors was successful. Figure 12 shows the serial monitor when the sensor was uncovered and there was movement in the room. We also tested to make sure the sensor is unresponsive when there is no movement in the surroundings or the sensor is covered (Figure 13).

[bookmark: _oxnso56wkge9]Carbon Monoxide Sensor Testing
Testing on the carbon monoxide gas sensor has not yet been conducted, due to a mistake when ordering the materials. However, the part has been ordered and everything is prepared for testing to begin upon its arrival.
[image:]
Figure 14: Carbon monoxide gas sensor code in the Arduino IDE

[bookmark: _afyjwcfg3pnl]
[bookmark: _pywfm3tgn9y9]Speaker Testing

[image:]
Figure 15: Speaker testing code in the Arduino IDE

[bookmark: _ypkpyudxqqps]
[bookmark: _grbpeuwkfkm9]Customer Feedback
Potential clients and users were identified and were shown the initial testing and prototyping, some of their comments, questions, and ideas are shown below.
[bookmark: _ntci0t19y99b]Connectivity Testing
Many potential clients expressed concern that the WiFi/Bluetooth and notification system had now been tested initially. This is valid as it is an instrumental part of the system. The reason that they were not tested was due to a lack of software and hardware that made it impossible on the initial prototype day. The mentioned software and hardware has since been or is in the process of being obtained. The missing hardware included a 12V barrel connector for the GSM module and missing software for the Bluetooth and WiFi board.
[bookmark: _w09k0n65j2a4]Carbon Monoxide sensor testing
Concern was presented for the lack of Carbon monoxide testing as well. This is also very valid as this sensor will determine if the vehicle is becoming a life-threatening environment for the occupants and if the authorities are to be contacted. In order for the testing to be conducted, a missing part had to be ordered. It is expected to arrive sometime next week and testing will resume once it has.
[bookmark: _ssp3k8br11ta]Installation Testing
Questions were made on the final design and the installation method. As it wasn't planned to test these aspects there was no progress made. Testing of this aspect and making of a case for the system will be conducted in the near future, this testing will include mounting in different locations inside of a car to ensure that it is feasible and easy, and ensuring that measurements remain accurate and that sensors are placed in appropriate locations.
[bookmark: _i4fpqp3xrvru]Sensors in Union
As the sensors were tested individually, and not in union, there were questions on when testing would feature all sensors working together and if they would be capable of detecting the desired parameters accurately. All of this testing will occur next over the next couple of sessions, as it is a large task. But now that it is known that all sensors function individually, the combination of them should be fairly simple and is just a question of integration.

[bookmark: _qcai7nfxtxbe]
[bookmark: _87916h4o6458]Updated Bills of Materials
	Item
	Quantity
	Cost
	Taxes
	Shipping
	Total
	Link

	Arduino Uno
	1
	17.00
	N/A
	N/A
	17.00
	[1]

	Motion Sensor (HC-SR501)
	1
	11.99
	N/A
	N/A
	N/A
	[2]

	ESP32-BLE
	1
	16.90
	N/A
	N/A
	N/A
	[3]

	Various Capacitors
	1
	11.68
	N/A
	N/A
	54.36
	[4]

	Carbon monoxide gas sensor (MQ-7)
	1
	8.76
	2.69
	9.21
	20.66
	[5]

	Accelerometer (Cytron ADXL335)
	1
	11.86
	N/A
	N/A
	N/A
	[6]

	Temperature Sensor (TMP-36
	1
	1.92
	3.44
	N/A
	26.43
	[7]

	Transistor 2N2222
	1
	9.66
	N/A
	N/A
	N/A
	[8]

	8Ohm speakers
	1
	9.26
	N/A
	N/A
	20.90
	[9]

	Resistors (10k,15k,27k,470k)Ohm
	4
	0.65
	3.29
	13.85
	25.27
	[10]

	GPRS/GSM development board
	1
	26.19
	0.94
	N/A
	27.13
	[11]

	Pololu carrier for MQ Gas sensors
	1
	1.95
	0.30
	7.69
	9.93
	[12]

(Taxes and shipping costs are grouped by order)
Total Estimated Cost with taxes and shipping = 201.68 $
[bookmark: _a1vz9nkoa7de]
[bookmark: _rsl4ncyw2x3m]Prototype II - Test Plan
[bookmark: _wielw6ri7yq6]Objective:
The objective of the second prototype is to integrate the different sensors together into one system, to enable further testing and analysis of the critical subsystems.

[bookmark: _w71mjf2ykk10]Procedure:
1. Develop the required codes in the Arduino IDE to integrate the sensors.
2. Build the circuits for each subsystem.
3. Test that the accelerometer properly activates the system when the vehicle is at rest.
4. Test to verify that the temperature sensor and carbon monoxide sensors are activated when the vehicle is at rest.
5. Develop the application through which notifications will be sent.
6. Combine the physical prototype with the application and test the notification system.

[bookmark: _z7bz0nj7z4ru]Stopping Criteria:
Testing will end once it has been confirmed that the sensors are properly integrated and are collecting reliable data. Adjustments will be made accordingly until the prototype has a high degree of fidelity.

[bookmark: _d1wdnl173vab]Conclusion
In conclusion, we have completed and documented the first stage of prototyping, once this was done we presented the test results to potential clients for feedback and have since developed a second test plan that will be completed for the next deliverable. The next set of testing will include developing the codes required to run the system on the microcontroller, we will build all required circuits, and test the systems that could not be tested initially. Once this testing is done it will be documented once again in the next deliverable.

[bookmark: _sbrbmwc7w1cm]

image14.png
temperature_sensor_oct2 8¢
//the resolution 1s m egree centigrade with a

//500 mV offset to allow for negative temperatures

/*
* setup() - this function runs once when you turn your Arduino on
* We initialize the serial connection with the computer
*/

void setupQ)

{
Serial.begin(960@); //Start the serial connection with the computer

//to view the result open the serial monitor
}

void loop() // run over and over again

{

//getting the voltage reading from the temperature sensor
int reading = analogRead(sensorPin);

// converting that reading to voltage, for 3.3v arduino use 3.3
float voltage = reading * 5.0;
voltage /= 1024.0;

// print out the voltage
Serial.print(voltage); Serial.println(" volts");

// now print out the temperature

float temperatureC = (voltage - ©.5) * 100 ; //converting from 1@ mv per degree with 500 mV offset
//to degrees ((voltage - 500mV) times 100)

Serial.print(temperatureC); Serial.println(" degrees C");

// now convert to Fahrenheit
float temperatureF = (temperatureC * 9.0 / 5.0) + 32.0;
Serial.print(temperatureF); Serial.println(" degrees F");

delay(1000); //waiting a second

image5.png
r. [N} |dev/cu.usbserial-1430

| Send

278.62 degrees F
1.87 volts
137.01 degrees C
278.62 degrees F
1.86 volts
135.55 degrees C
275.98 degrees F
1.87 volts
137.01 degrees C
278.62 degrees F
1.87 volts
136.52 degrees C
277.74 degrees F
1.85 volts
135.06 degrees C
275.11 degrees F

Autoscroll Show timestamp Newline 9600 baud Clear output

-

image12.png
r. [N} |dev/cu.usbserial-1430

| Send

-21.09 degrees F
0.20 volts
-29.98 degrees C
-21.96 degrees F
0.21 volts
-29.49 degrees C
-21.09 degrees F
0.21 volts
-29.49 degrees C
-21.09 degrees F
0.21 volts
-29.49 degrees C
-21.09 degrees F
0.21 volts
-29.00 degrees C
-20.21 degrees F

Autoscroll Show timestamp Newline 9600 baud Clear output

image16.png
accelerometer_works_oct2 8b

#include <math.h>

const int x_out = Al; /* connect x_out of module to Al of UNO board */
const int y_out = A2; /* connect y_out of module to A2 of UNO board */
const int z_out = A3; /* connect z_out of module to A3 of UNO board */

void setup(Q) {
Serial.begin(9600);
}

void ToopQ) {
int x_adc_value, y_adc_value, z_adc_value;
double x_g_value, y_g_value, z_g_value;
double roll, pitch, yaw;

x_adc_value = analogRead(x_out); /* Digital value of voltage on x_out pin */
y_adc_value = analogRead(y_out); /* Digital value of voltage on y_out pin */
z_adc_value = analogRead(z_out); /* Digital value of voltage on z_out pin */

Serial.print("x = ");
Serial.print(x_adc_value);
Serial.print("\t\t");
Serial.print("y = ");
Serial.print(y_adc_value);
Serial.print("\t\t");
Serial.print("z = ");
Serial.print(z_adc_value);
Serial.print("\t\t");
//delay(100);

x_g_value = ((((doubled(x_adc_value * 5)/1024) - 1.65
y_g_value = ((((double)(y_adc_value * 5)/1024) - 1.65
z_g_value = ((((double)(z_adc_value * 5)/1024) - 1.80

) 7/ 0.330); /* Acceleration in x-direction in g units */
) 7/ 0.330); /* Acceleration in y-direction in g units */
) 7/ 0.330); /* Acceleration in z-direction in g units */

roll = (((atan2(y_g_value,z_g_value) * 180) / 3.14) + 180); /* Formula for roll */

pitch = (((atan2(z_g_value,x_g_value) * 180) / 3.14) + 180); /* Formula for pitch */

//yaw = (C (atan2(x_g_value,y_g_value) * 180) / 3.14) + 180); /* Formula for yaw */

/* Not possible to measure yaw using accelerometer. Gyroscope must be used if yaw is also required */

Serial.print("Roll = ");
Serial.print(roll);
Serial.orint("\t"):

image4.png
Serial.print("Pitch = ");
Serial.print(pitch);
Serial.print("\n\n");
delay(1000);

image3.png
/dev/cu.usbserial-1430

Send

X

419

753

609

522

400

813

662

539

457

395

863

688

549

327

743

640

553

486

z

z

384

680

643

547

383

615

597

539

481

Roll

Roll

Roll

Roll

Roll

Roll

Roll

Roll

Roll

254,

239.

231.

229.

142.

238.

232.

231.

98

36

94

83

73

72

94

Pitch

Pitch

Pitch

Pitch

Pitch

Pitch

Pitch

Pitch

190.73

216.89

225.37

224.12

193.03

207.42

215.19

220.29

-

Autoscroll

Show timestamp

Newline

A
v

9600 baud

A
v

Clear output

image7.png
/dev/cu.usbserial-1430

Send

x = 313 y = 388 z
x = 314 y = 359 z
X = 314 y = 357 z
x = 313 y = 352 z
x = 314 y = 354 z
x = 314 y = 358 z
x = 314 y = 357 z
x = 314 y = 359 z

413

371

361

356

357

359

358

359

Roll

Rol

Roll

Rol

Roll

Rol

Roll

Rol

228.49

263.65

291.88

311.98

305.96

295.70

299.21

294.63

Pitch

Pitch

Pitch

Pitch

Pitch

Pitch

Pitch

Pitch

299.39
354.45
17.63
26.82
25.87
21.87
23.90

21.87

Autoscroll Show timestamp

Newline

A
<

9600 baud

A
v

Clear output

image9.png
motionsensor_oct2 8a
// LED

int pirPin = 2
int pirStat =
void setup(Q {
pinMode(pirPin, INPUT);

Serial.begin(9600);

}
void ToopQ{

pirStat = digitalRead(pirPin);

if (pirStat == HIGH) { // if motion detected

Serial.println("Motion detected");

// turn LED OFF if we have no motion

} else {

Serial.println("...");

}

// PIR Out pin
// PIR status

>
>

image1.png
/ 5 —
[BN] [dev/cu.usbserial-1410

Send

Motion detected
Motion detected
Motion detected
Motion detected
Motion detected
Motion detected
Motion detected
Motion detected
Motion detected
Motion detected
Motion detected
Motion detected
Motion detected
Motion detected
Motion detected
Motion detected

Autoscroll Show timestamp Newline 9600 baud Clear output

image2.png
AEOSGSLSTSTSTSTSSG
[BN] [dev/cu.usbserial-1410

Send

Autoscroll Show timestamp Newline 9600 baud Clear output

image11.png
sketch_oct30a §
void setup() {

// initidlize serial communication at 9600 bits per second:
Serial.begin(9600);

3

// the loop routine runs over and over again forever:

void ToopQ) {

// read the input on analog pin 0:

int sensorValue = analogRead(A@);

// print out the value you read:
Serial.println(sensorValue);

delay(1); // delay in between reads for stability

image15.png
toneMelody

#include "pitches.h"

// notes in the melody:
int melody[] = {

NOTE_C4, NOTE_G3, NOTE_G3, NOTE_A3, NOTE_G3, @, NOTE_B3, NOTE_C4
b

// note durations: 4 = quarter note, 8 = eighth note, etc.:
int noteDurations[] = {

4, 8, 8,4, 4, 4, 4, 4

b

void setup(Q {
// iterate over the notes of the melody:
for (int thisNote = @; thisNote < 8; thisNote++) {

// to calculate the note duration, take one second divided by the no
//e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.

int noteDuration = 1000 / noteDurations[thisNote];

tone(8, melody[thisNote], noteDuration);

// to distinguish the notes, set a minimum time between them.
// the note's duration + 30% seems to work well:

int pauseBetweenNotes = noteDuration * 1.30;
delay(pauseBetweenNotes);

// stop the tone playing:

noTone(8);

}

void loop() {
// no need to repeat the melody.

3

image8.jpg

image13.jpg

image10.jpg
RX TX SV GND
SCL SOA 5V GND
3.3V 3.3V GND GND

153 O
43401 O

image6.jpg

