Project Deliverable G: Prototype 2 and Customer Feedback

Mariyam Sheikh, Amélie Chénier, Michael Braimah,
Margaret Kravchenko, Luke Meintjes

November 10, 2024

Introduction:

Proper documentation is crucial during the prototyping phase. This document will outline the
second prototype of the smart glasses assistance website, covering a key subsystem and includes
a model. It introduces the location subsystem It also includes documentation of the testing
conducted on the prototype. Feedback collected from this testing will be analyzed and used to
guide potential adjustments to the target specifications or the design of the website. Lastly, the
document presents a test plan for the third prototype.

1.

This prototype was made to test how the location subsystem would work on the website. It
allows us to receive feedback on this subsystem and improve it for the future product. The
program allows the user to enter a location, a radius around that location and the type of place
they are looking for (restaurant, park, school, ...). The program then prints the different places
which fit inside the radius and the description of the place. Along with the name of the place, it
also prints the adress and the location of the place. To complete these functions, it uses a Google
Places API. The user would use this setting on the website.

Part of this code was written with Chat GPT, where the prompt was “Write a code for a Google
Places API key with get location”, 09/11/2024.

7jn2E-IhCZ3T"

print("E
locati
print
radius

type of place = inbut()

start_location = "location™

: location,
radius,
type_of_place,
API KEY

response = requests.get(places_endpoint, params=params)

if response.status_code == 200:
data = response.json()

if ‘results’ data:
print(f"Found {len(data[‘results'])} {type of place}s near {location}:\n")

for place in data[‘results’]:
name = place.get('name’, 'No name available')
address = place.get('vicinity', 'No address available')
place id = place.get('place id",)

print(f"- {name}, Address: {address}")

if place_id:
details_params = {
‘place id': place id,

‘key': API_KEY

}

details response = requests.get(place details endpoint, params=details params)

if details response.status code == 208:
details data = details response.json()

if "result’ details data:
result = details data['result’]
location = result.get('geometry’, {
latitude = location.get('lat’, '

1) -get('location’, {})
N/A
longitude = location.get('lng', 'N/A

)-
)

print(f" -> Latitude: {latitude}, Longitude: {longitude}")

print(f" -> Getting directions from {start_location} to {name}...\n")

directions_params = {
‘origin': start_location,
‘destination’: f"{latitude},{longitude}”,
‘key': API_KEY,
'mode’: ‘walking'

directions_response = requests.get(directions_endpoint, params=directions_params)

if directions_response.status_code == 208:
directions_data = directions_response.json()

routes’ directions_data len(directions_data['routes']) > o:
route = directions_data['routes’][8]
legs = route.get("legs’, [])

if len(legs) > e:
leg = legs[e]
distance = leg['distance’]["text']
duration = leg['duration’]["text']
print(f" -> Distance: {distance}")
print(f" -> Estimated travel time: {duration}\n")
else:
print(" -> No route found.")
else:
print(f" -> Error getting directions: {directions response.status code}")
else:
print(" -> No detailed location information available.™)

print(" -> No Place ID available.™)

-> Error retrieving details for {name}. Status Code: {details_response.status_code

)

else:
print("No results found.™

print(f"Error: {response.status_code}, {response.text}")

Link to prototype:
GNG1103_Places_Location_Directions_ API-Deliverable G.py

2.

For this subsystem, it is a focused type focusing on the location subset where the user can input
the initial location and the radius in meters, and then the type of place they are looking for, such
as a restaurant, park, or school.

For the key characteristic comprehensibility, the user, when asked the location, without looking
at the code, it’s hard to tell whether the location is the starting location that they’re starting or
whether it is the location they are looking for. What places could be defined as a restaurant, and
what type of school (elementary, secondary, university). The parameters need to be defined a bit
more.

With the outputs being latitude, amount of distance that will need to be traveled, and how long it
will take there. A lot of functions are defined, such as the mode of transport like bicycling,
walking, and transit. Which makes this program very integrateable to the camera subsystem and
then the audio subsystem to notify the user potentially. More clear boundaries are needed in
order to understand the user’s limits with this API.

Terminal that the user entered

45.2529,-75.4142

Enter a radius in meters:

3000

Enter the type of place you are looking for (restaurant, school, park,...):
Park

Found 1 parks near 45.2529,-75.4142:

- Kenmore Bicentennial Park, Address: Ottawa

-> Latitude: 45.2333186, Longitude: -75.4163177

https://1drv.ms/u/c/bdf9c02c240ea85c/EUBWFpN9E2FIvbeFmCL-uhwBrd-rpmKQ-FPxdOINfa2NNw?e=crANho

-> Getting directions from location to Kenmore Bicentennial Park...
-> No route found.
Functionality of the prototype:

We need to specify to the user whether this is a case-sensitive case and how they should input the
location through the postal code or through the common name of the location.

For the type of place, the user could be potentially confused on whether it is a specific park or
just a general location to input, like restaurants.

Prone to error for the user, as it is hard to switch back and fix it if the location was not desired or
if there was a spelling error in one of the parameters.

We need to change the code so it allows the user to enter a location in text instead of in
coordinates since it is a very unconventional method.

3.

For this prototype the same principles apply to the testing of it, we will only test for the
functional requirements and not the constraints and functional requirements since it isn’t physical
glasses that are being tested but instead the functions of it. So again we will apply the same tests
as the previous prototype:

Functionality - Test to see if prototype works

Adaptability - Test to see if user can adapt to when the prototype changes

Number of uses - Test to see how many clicks it takes to make a change

Number of features - Check the amount of options are available for change

Easy to use and understand - Survey users of prototype

Test:
Test type Functionality | Adaptability | Number of [Number Easy to
uses features understand
and use
Test results | Yes Yes 4 3 No

Analysis:

For the first test the functionality of the prototype does technically function but the only
problem is that the inputs need to be extremely specific for the API to function correctly.
For the next test it is extremely adaptable with the code being able to adapt instantly and
changes to make for the location data as well. For the number of uses there were four
input values that needed to be put in to change it. Next for the number features there are

three: The location inputs, the verification of search results and the directions. Lastly is
the ease of use and understandability, for this prototype specifically it isn’t very user
friendly with it not being intuitive for the average user on how it works.

4.

Mechanical Engineering Student:

e The prototype combines multiple Google APIs- places, place details and directions-
making it robust for various location-based queries. This enables the user to search for
places and obtain detailed directions and travel estimates.

Computer Engineering student:

e “The clear prompts for location, radius, and type of place make the input process
straightforward. I like that users can specify the type of establishment they’re looking for
(e.g. restaurant, park), which aligns well with user needs.”

e “Ilike that the prototype provides users with comprehensive details, such as latitude,
longitude, distance, and estimated travel time. This makes it a valuable tool for
location-based assistance and planning.”

Software Engineering Student:

e “The functions and parameters seem like they can be easily extended, making it adaptable

for future integration with different subsystems too!”
Computer Science student:

e The code includes error handling for API responses, ensuring that users get feedback if

something goes wrong, which is crucial for user experience in a real-world application.
Mechanical Engineering Student:

e “The prototype is well-structured, providing a strong foundation to add improvements in
clarity and usability, such as predefined suggestions for location format or input
validation to prevent errors.”

3S.
No updates needed.

6.

Prototyping Test Plan

Testing Functionality

Method: Testing the code with a lot of inputs.

Duration: 2 days

Timing: These tests will be conducted upon completion of the prototype.

Testing Adaptability:
Method: Testing the code with a wide range of inputs.
Duration: 1 day

Timing: Upon Completion of the prototype.

Testing Understandability and Difficulty of Use:
Method: Survey

Duration: 1 day
Timing: Upon completion of the prototype.

Conclusion:

During the prototyping phase of the Smart Glasses Assistance App, we gave customers an
opportunity to explore our ideas and provide valuable feedback. Although this feedback didn’t
change the target specifications or the app’s design, it remains important for future prototypes.

Trello Update:
& G O htipss/trellocom/b/nex0TMXB/gng1103-project & 0 % 3 - O

[MTrello Workspaces v Recent v Starred v Templates v Create Q Search

T Trello Workspace < Atlassian uses cookies to improve your browsing experience, perform analytics and research, and conduct advertising. Accept all cookies to

e °) ! ‘ Preferences Only necessa v Acceptall
indicate that you agree to our use of cookies on your device. Atlassian cookies and Tracking nofice J °J 5

Vemlein
j PO 0 Board
GNG1103 Project GRGIU3 Broject Y ~

To do Doing Done

Deliverable I: Design Day Deliverable H: Prototype 3 and Deliverable F: Prototype 1 and
Presentation Material Customer Feedback Customer Feedback

© on @OHQ® ONovat B0 ®
. 00®06® 0®060

+ Addacard =}

Final presentation Deliverable A: Team Contract
Gon o =
[111

Deliverable B: Needs Identification
and Problem Statement

> X -
0060®

Deliverable C: Design Criteria

+ Addacard

>
e U.o
L.

You are a guest i this Workspace. ® =

To see other boards and members in this

iy ot USRS 0®060

Workspace member.

+ a
Request to join Add a card
T

