
Webcessible
The internet for all

Marc Frame | Anthony Aoun | Nicolas Gnyra | Cedric Brisebois

December 13th 2018
GNG 2101 | Dr. Hanan Anis

Abstract
Webcessible was an attempt to build a simplified web browser that would make browsing the web
easier on people with physical disabilities. Webcessible was setup in such a way to allow for a variety
of inputs to suit users with varying handicaps.

Table of Contents

Abstract

Table of Contents

List of figures

List of tables

Main Body
Need Specification

Benchmarking
Metrics List
Marginal/Ideal Values

Specifications
Conceptual Designs
Gmail
Project Planning
Feasibility Study
Prototyping
Testing
Final Product

Google
Wikipedia

Business Model
Economic Analysis
Conclusion

User Manual
Installation of development environment
Development of a config file

List of figures
Figure 1 : mockup for a feed
Figure 2 : mockup for gmail
Figure 3 : example of final product loading google
Figure 4 : example of final product loading wikipedia
Figure 5 : monetization channels for webcessible
Figure 6 : Business Model Canvas

List of tables
Table 1: Need finding
Table 2: list of metrics
Table 3: metric ideal value list
Table 4: specifications
Table 5: 3 year plan

Main Body

Need Specification
This project involved solving a problem at a larger scale. We planned to build something that would
solve a problem many patients at the hospital experienced, but all in many different ways. Thus, the
proper development of our need specifications was crucial for the long term success of our solution.

Our problem statement was to build software capable of simplifying web pages to accommodate
patients who have difficulty using the Internet with standard input methods and have to use custom
tools to interact with computers, whether it be eye tracking, joysticks, or anything that isn’t the
standard keyboard-and-mouse combination.

We had chosen to make a Chrome web extension as our project. It was easier than making an entire
new browser or a website (an endeavour which, after further thinking, would take an overwhelming
amount of time and effort). We have also chosen to have our website configuration files stored
remotely on something like an AWS S3 bucket rather than having them stored locally, while still having
an option to have some locally in case the user would like something completely custom rather than
something that was built for general use.

Client needs on a scale of 1 to 5, 1 being least important and 5 being most important:

Need Importance

1 Multiplatform (accommodate for different OSes) 1

2 Easy to read/comprehend code (lots of comments & config template) 5

3 Accommodate for different config files for specific web pages 4

4 Configuration files are easy to implement for the user/helper 4

5 Interface is easy to use 5

6 Able to change complexity of web page 3

7 Does not hinder a person’s use to navigate the Internet 5

8 Able to accommodate for different types of input (buttons, joysticks,
sliders, etc.)

3

9 Easy to install 3

10 Runs reliably 4

Table 1: Need finding

Benchmarking
We found very little other solutions that addressed this problem. Most browsers already have
accessibility features, but they are mostly aimed at people with sight problems rather than people with
limited motor functions. Many browsers also have a “reading mode” that strips web pages of a lot of
the unneeded bulk, but these sometimes remove important information that our client will want to
keep, and these special modes are far from being optimized for ease-of-access. There are also
services such as loband (​http://www.loband.org/​) or Rocket Readability for Google Chrome which are
advertised as tools to simplify web pages, but they are given in a one-size-fits-all formula that often
doesn’t work with more complex websites such as Gmail and YouTube, most of which are the
websites with which our clients have the most problems.

Metrics List

Metric # Need # Metric Imp. Units

1 7 Additional time taken to load web pages 3 s

2 1 Operating systems supported 1 list

3 2 Code quality 4 %

http://www.loband.org/

4 3 Number of websites configured 3 #

5 8 Input methods supported 4 list

6 6 Flexibility of configuration 4 subj

7 5 Complexity of user interface 4 subj

8 4 Complexity of configuration 5 subj

9 10 Number of bugs 4 #

10 9 Ease of installation/setup 3 subj

11 2, 4 Documentation coverage 4 %

12 10 Unit test coverage 2 %

Table 2: list of metrics

Marginal/Ideal Values

Metric Units Marginal Value Ideal Value

1 Additional time taken to load web pages s < 5 < 1

2 Operating systems supported list Linux Windows,
Mac, Linux

3 Code quality % > 80 100

4 Number of websites configured # 3 > 10

5 Input methods supported list Eye tracking Eye tracking,
joysticks,
buttons, sliders

6 Flexibility of configuration subj medium very high

7 Complexity of user interface subj medium low

8 Complexity of configuration subj medium low

9 Number of bugs # < 10 (nonbreaking) 0

10 Ease of installation/setup subj medium very easy

11 Documentation coverage % 75 100

12 Unit test coverage % 50 100

Table 3: metric ideal value list

Specifications

Metric Units Value

1 Additional time taken to load web pages s < 3

2 Operating systems supported list Linux, Windows

3 Code quality % 90

4 Number of websites configured # > 5 (nonbreaking)

5 Input methods supported list Eye tracking,
joysticks

6 Flexibility of configuration subj high

7 Complexity of user interface subj low

8 Complexity of configuration subj low

9 Number of bugs # < 5

10 Ease of installation/setup subj easy

11 Documentation coverage % 100

12 Unit test coverage % 100

Table 4: specifications

Conceptual Designs
After grasping the problem at hand, developed specific design criteria which led us to select the idea
of building a web browser extension. The design criteria we came up with were:

● Not too complex to program
● Doesn’t cost too much to have up and running continuously
● Easy to update/add support for new websites
● Minimal additional time taken to load web pages
● Lots of supported input methods
● Easy to install & set up
● Flexible configuration
● Easy to support in the future (handing project to other developers shouldn’t be an issue)

Conceptually, our initial designs were:

Facebook

Figure 1 : mockup for a feed

Gmail

Figure 2 : mockup for gmail

After several weeks of work, we were capable of turning these designs into real life. We build a
functional version of Google and Wikipedia.

Project Planning
Our project planning was done nearly exclusively through Trello, a platform on which it was possible
for us to create a kanban board to organize our tasks. We decided to organize our project in this
manner after discussing different ways of dealing with tasks and our timeline

Feasibility Study
Following the TELOS factors, we deemed that our project was feasible. Team members all had at
least two years of software development experience, so while some of us did not have skills in
JavaScript, the skills acquired through software development were easily transferable. As our project
is purely software, there were virtually no costs associated with its development. The product operates
on publicly available data and is fully open-source, so there were no legal problems to be worried
about. Since most of the parts of the project did not directly rely on each other, it was deemed feasible
to develop them in parallel and integrate them near the end. We expected development to follow a
flexible but well-defined schedule so everything would be done on time.

Prototyping
Our approach to prototyping was very iterative due to the use of the Agile development model. This
allowed us to always have a functional prototype available to show to our client. We unfortunately did
not keep a history of the progress of our prototype as features were added, so no screenshots could
be provided for this section.

Testing
Testing was mostly done on our end. We unfortunately did not have access to the Sensact hardware,
and therefore had to use a standard keyboard and mouse to interact with our product. However, we
were told by our client that the Sensact interacted with the computer by simulating certain keystrokes
and mouse movement, so our testing was mostly based upon using a few keys to interact with our
product.

Final Product
Our final product is a robust framework that allows people with little knowledge of programming to
simplify various websites’ user interface through configuration files. While some of the ideas we had
along the way were unfortunately not implemented in our final product, they could easily be built upon
what we have created over the last 3 months to improve the product.

The following images are taken directly from the working final product.

Google

Figure 3 : example of final product loading google

Wikipedia

Figure 4 : example of final product loading wikipedia

Business Model
Our business model was built in order to resemble to the most recent successful companies out there
today. In other words, we want to take advantage of the current trend of freelancers coming to market.
To date, we came up with a simple business model that can provide a constant stream of configuration
files while we focus on the platform from which they are built. Our business model consists of a
monthly subscription held by our users and a community of freelancers who build the desired
configuration files demanded by our users. In short, freelancers build configuration files using our

extension/platform in order to supply the various configuration files needed to supply the demand of
the users. In terms of payment, freelancers receive a basic pay depending on the popularity of the
config file for which they built. The amount of downloads a file will get will determine how much the
freelancer will get paid. In that case, we can assure that the payment is correlated to the amount of
users. The following graph is a simple representation of the business model.

Figure 5 : monetization channels for webcessible

Our business model canvas follows. This canvas is a more detailed visualization of our business
model, outlining who we can partner with, who we sell to ect.

Economic Analysis
During the building of our extension, we conducted an economic analysis in order to determine our
initial costs, our BOM and out income. We also conducted a 3 year plan. Since this is a software and a
BOM would not be as conventional, we built a formula in terms of the amount of users in order to
determine the cost by user. The formula follows:

F(n) = (([Cost of Development])+ ([Server Hosting] + ([Additional Cost per User] * n))) / n

Figure 6 : Business Model Canvas

In terms of cost that is unrelated to a BOM, we determined that 4000$/month would be spent on
paying freelancers who would build configuration files. 10$/month would be spend in order to maintain
our servers meant to hold the configuration files and the website. 10$/year would be spend in order to
pay for our domain name. Finally, 3600$/month would be spend in order to hire developers who would
maintain our platform. Maintenance would include bug fixes, updates and so on. We also included a 3
year forecast in terms of income and expenses. The following table is a brief overview of a 3 year plan.

year:quarter # Users Capital

1:1 10 Sales Revenue:​​ $0
Operating Cost:
$10 * 4 months
Operating Income:
$-40

2:1-4 2500 Sales Revenue:
($20 * 12 months *
2500 users) =
$600,000
Operating Cost:
$100 * 12 months
+ $3600 * 2 * 12
months
+ $3000 * 12 months
+ $50000
= 173,600
Operating Income:
$426,400

3:1-4 10000 Sales Revenue:
($20 * 12 months *
10000 users) =
$2,400,000
Operating Cost:
$100 * 12 months
+ $3600 * 2 * 12
months
+ $8000 * 4 * 12
+ $3000 * 12 months
+ $12000 * 12 months
+ $50000
= $701,600
Operating Income:
$1,698,400

Table 5: 3 year plan

Please refer to our deliverable H for a more detailed 3 year plan. During our economic analysis, we
also calculated our NPV which is 2,329,516$.

Conclusion
The project was a success in terms of testing the feasibility and utility of a simplified browser. Though
the project in the current state would be hard pressed to help users it allowed us to determine what we
should have done. If we were to redo this project entirely, we would not have used a chrome
extension, despite the portability, the pain of attempting to bend within the expectations of a chrome
extension with what we were attempting to do was very inconvenient and caused many delays during
development. We would have chosen a framework like Electron, which offers the same portability of
chrome extensions while also giving more freedom with what and how we can program.

User Manual

Installation of development environment

Go to this URL

Figure 7.1 : where to load

Load unpacked extension

Select Extension and click open

Run the flask development server with dev.py, this is seperate from the server that is used for the
website

​

Worktab is used for adjusting the URL

This is what shows up within the view tab when google is typed into the worktab. From here the app
is completely usable for the currently developed websites. The demod example is being able to
google something, view the results and then read the wikipedia article related to it

* note: to initialize the and make usable for someone with any handicap preventing regular use of a
web browser, the worktab must first be operated, this was to be changed by the addition of a
landing page but was never completed

Development of a config file

Key word description

objectId Automatically generated based off of the index in the objects list 0,1,2...

name x Name of cell

name x Name of object (MUST BE UNIQUE)

type Type of object,

grid Only takes up one grid

multigrid When it spans a finite number of scrolls

infinitescroll Multigrid that is derived from an infinite scrolling website
(facebook feed, twitter feed)

gridtype Defines the type

img The grid will be interacted with as an image

link The grid will be interacted with as a link

...

objects type

img

input:text Input tag with type text

...

kwargs.type

value Value is given
“value” : “The Text to Appear”
“Value” : “https://example.com/image”

worktab Derived from the worktab
Type: cssselector
Desc: selector utilized by jquery
Ex.
“value” : {“type” : “cssselector“, selector” : “p.ParagrahClass”, “attr” : “text”}
“value” : {“type” : “cssselector“, “selector” : “img#logo”, “attr” : “src”}
“value” : {“type” : “cssselector“, “selector” : “a.homelink”, “attr” : “href”}

col x Which column to be placed in 0,1,2…
Will default to the first available cell

row x Which row to be placed in 0,1,2…
Will default to the first available cell

selectable Default true;
False can’t be selected used for images

clicked x type

form Can be used for input of forms to apis

link Changes the webpage to something specified by value

...

Funcconfig
Value

type Denotes the type

value Stirng value

cssselector Selects the value from css

This has some sibling fields that must
accompany it including

selector What CSSselector to use

parent Whether to select n
parents up.

attr href, val...

