GNG5140

Design Project User and Product Manual

Open-Sourced Educational Toys — BusyPad 3.0

Submitted by:

Braden Stang, 300426142
Jingxuan Xu, 300450716
Mahmoud Mohammed, 300369733
Youssef Fathi, 300380805
April 3, 2025
University of Ottawa

_

it

uOttawa

Table of Contents

TADIE OF CONTENES ...t bbbttt nb e i
[0 T U =TSP RPP PP vi
LISt OF TADIES ...t viii
List of ACroNYmMS and GIOSSAIYciveiuiiiieiieie e et sre e re e e e iX
1 INEOTUCTION ...ttt e et b bbb nn e r e 1
2 OVEIVIBW ...ttt bbbt b bbbt b e n et b n e 2
2.1 CONVENTIONS.eetiiiitiiteiei ettt bbbt bt b et b e b 3
2.2 CaUtIONS & WAIMINGSeiviiieiieeie e steete st ste et e st e e te e e ssaesaeaseestaesteesaesseesseaneesraenseaneens 3

K I =11 [5] = U (o PSSR 5
3.1 Set-UP CONSIABIALIONScviivieiieiecie sttt e et e e teeste e e sseesteesae s e e nreeneens 5
3.2 User ACCESS CONSIARIALIONSeveuieiiieieiisie ettt 10
3.3 ACCESSING the SYSIEIM.....cuiiiiiie ettt e ba et sneenas 10
3.4 System Organization & NaVIGatioNccccviieieiiiiieie e 13
3.5 EXItING the SYSIEIM ...veieiiiice e ettt 14

N & N T To R (g To I V] (=] o SR 15
4.1 RegiStering an ACCOUNTccuiiiiiieite e eee sttt e te et e e et e sraesteeeearaesreenennee e 15
4.2 L0ogging INtO YOUr ACCOUNTccveiiieieitieite e steesie ettt sra e esteenae e sreeneenee s 15

@ Parent ACCOUNT LOGIN. ..ottt 16

o Player ACCOUNT LOGIN....cciiiiiiiiieie ettt e e e e esraenas 16

4.3 Parental Control FUNCLIONccooiiiiiiiiii e 16

A4 PlayiNg GAIMES.....cc.iiiiieieieitest ettt t bbbttt nb e bbbt bt st e n bbb ne e 17

LI S YT T T N T Uy 1= ST 17
o Filtering Games DY CaAteQOIYcuoiuiriiierieiirie it 19
Troubleshooting & SUPPOITueiiiieieie e 20
5.1 Error Messages 0r BENAVIOIScccuiiiiiiiiiiiiiseneiee e 20
5.2 Special CONSIABIALIONSccuiiiiiieiiiiieie ettt sb b 20
5.3 IMAINTENANCE ...ttt bbbttt bbbttt et e bbbt 20
5.4 SUPPOIT .t n e 21
Product DOCUMENTALIONoiuiiieiiiitieiieieie ettt bbb 22
6.1 HAIAWAIE SYSTEM ..ottt b bbb 22
o BOM (Bill Of MAterialS)......cccuviiiiiiiieiiie ettt 22
® EQUIPMENT TIST ..o e 22
® INSTIUCTIONS ...t b bbbttt et r e 23
LT | I 11 o OSSP PSOPRRPR 38
® EQUIPMENT TIST ..o 42
® INSTIUCTIONS ...t bbbt 42
6.3 SOTtWAIE SYSIEM ... eiiiiiiciie et e e e sbe e s be e taeanneen 45
® FTONTENA ... bbb bbbt 45
® BACKEN ... s 48
SYSEEM REGUITEMENTS.ctii ittt st e te e s e e ae e s sbe e beessreesbeesnbeenreeannaens 48
INSEAHTALION. ...t 48
6.4 ClONE the REPOSITONYoiuieiieie ettt ettt st 48

o Create VirtUal ENVIFONMENTeoe et e e e e e e et e e e e e e e aaae 48

o INStAll DEPENABNCIESc..oiviiiiiiiiieeee e 49
® FIFEDASE SEIUD ..eiiviiiiie ittt 49
RUNNING ThE AP oo e et e et e ae s beenreas 50
DeVElOPMENT IMOUE......c.vie ettt e e b e e e e be et eesbeesnreereas 50
PrOAUCTION MOt 50
F N o I U ST o [PPSR 50
AULNENTICATION ...t nre s 50
Game Management (AAMIN)ooi i e e 53
P LAY EE ACCESS ...ttt tee ettt ettt e s b e et e e st e et e e Rt e e b e e aab e e be e eaae e be e e nr e e teeanne e reeanes 61
I8 o] 1= g oo 1 £ oo USSP PSPPSR 63
o CommON INStAHALION ISSUEScuviuiiiieieiee et 63
® CONTIGUIALION ISSUES......vieiie ittt ettt ettt e b e s e et e ennaenaeeanes 64
® RUNTIME ISSUES ...ttt bbbttt bbbt 65
APT RETEIENCE ...ttt bbbt bt bbbt e e bbbt st 65
o Authentication ENCAPOINTS........ccoiiiiiieiii et 65
® AJMIN ENAPOINTS. ...ttt bbbttt b e 66
o Player ENAPOINTSccuviiiieiie ettt 67
Data IMOTEIS ... 68
® GAME MOUEBL ...t bbb 68
® AAMIN MOGET ... 68

O DEVICE MO ... e e ettt e e e e e ettt e e e e e e aaae 69

CTEC T O (o100 I o [0 1S) 1o OSSR 69

® PIEIEOUISITES ...ttt bbbttt b bbbttt e e bbbt 69

LI | 01511 €0 Tod o] SRR PP TR OPTOP 70

6.6 TeSting & ValidatioNceoiiiiiiiiie e 76

® NUMDEE OF GAMESviivieieee ettt e e naeeneesraeeeeneenneeneas 76

® BOOt PEITOIMANCE.... ..ot e 76

o Games and PerfOrMANCE.........coiveiuiiieieee et enne e 77

® APP PeIrfOIMANCE ..ottt ettt bt sae s 78

® APP FUNCHONAIITY ...t 79

7 Conclusions and Recommendations for FUture Work ..o 81
7% A o o] 31 [] o OSSR 81
7.2 Recommendations and FULUIE WOIK...........coviiereiieiie e 82

8 BIDHOGrAPNY ...t 84
APPENDICES ...ttt et a e et e et e et e et e e e nate e naeeanee s 85
O APPENDIX I: DESIGN FIIES ..ottt ettt nas 85

List of Figures

Figure 1: BUSYPaO 3.0 DEVICEcccuiiiii ittt sttt e et st e et e anna e 2
Figure 2: BusyPad 3.0 attached power USB Cablecccoiieiiiiiiiiiic e 5
Figure 3: Opening the WPA_GUI appliCatioN..........ccccoeiieiiiiecie e 7
Figure 4: Clicking the 'Scan’ button to search for Wi-Fi Networks.ccccccovvvveviviveiieenesieceene, 7
Figure 5: Viewing available networks and signal strength ..., 8
Figure 6: Entering the Wi-Fi password (PSK).........cccvoiiiiiiiiie e 8
Figure 7: Closing the WPA_GUI window after CONNECLIONccocvveieeieeiie e 9
Figure 8: BusyPad login screen asking for device code after network connectionc.......... 9
Figure 9: Parent Login Screen: Enter email and password to access parental controls................ 12
Figure 10: Parent Registration Screen: Sign up with email, password, and device code.............. 12
Figure 11: Player Page Login: Enter the device code to access child-friendly content................ 13
FIQUIE 12: SIGN-UP PAQE..... e iteeieeie ettt sttt ettt be et et esta e te e e e sraesaeennesneenreeneeas 15
Figure 13: Home Page for Parent ACCOUNTccoiieiiiie et 16
Figure 14: Parental Contral PAgEcoiiiiiieie ettt nne e 17
Figure 15: Home Page for Player ACCOUNLccoiviiiiie et 18
Figure 16: Playing Game PAJEc.civiiiiieie ettt e et ste st sta e te e saaesteenaesreenneeneeas 18
Figure 17: Raspberry Pi Zero 2W Pin OUL...........ccoviiioiiie et 23
Figure 18: JOYSICK CONNECLIONc.eeiviiiiciic ettt esre e 25
Figure 19: Final Prototype Component LAYOULccceeveieeiieiieiiese e sie e e 25
Figure 20: Electrical DeCOMPOSITIONccviiieiiiicce et e e 26

Vi

Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:

Figure 33:

Final Prototype Hardware Implementation ..o 27
PIIMAgEr INTEITACE ..o 29
PIIMAgEr INTEITACEc.eiiiieiicee e 29
PUTTY SSH CHent INTErface.........ccoiiiiriiiiisesieieie e 30
RAPSDEITY PTCLI..oiiie e 31
KI0SK CONErol PANE ..o s 32
CURA 3D DeSIgN ParameterS........cueueieieriesiesiesiesieeeeie ettt see e sne e 39
BusyPad 3.0 CAD ASSEMDIYcoiiiiiiiiiiisieiee e 40
BusyPad 3.0 CAD ASSEMDIY Side VIBW........cccuiiiiiiiieie s 41
BusyPad 3.0 Orthographic SKEtCheS ..o 41
3D DeSIgN PriNt SELHINGSvveiieiieieieiiesie sttt 44
Frontend StruCture OVEIVIBWcoeiuiiiiiiiisie et 45
Cloud HOSEING DIAGIAM........oiuiiiiiiiiiieieieie ettt 70

vii

List of Tables

LI Lo (=T Aol (0])Y/ 1SS PRPPSTOPN IX
Table 2: Bill OF MAEIAIScoiiiiiii s 22
Table 3: Required COMPONENLEScciviiieiierie ettt se et ste et sre e te e sreesteeseesneesreennesree e 42
Table 4: Common INSAllAtIoN ISSUES..........ceiieiiiiiiicisees e 63
Table 5: CONFIGUIALION ISSUESccvveieiieiieerie ettt ste e s et e et esteesee e nneennenree e 64
Table B: RUNTIME ISSUES.......cuviiiieiiiiit ettt 65
Table 7: Authentication ENAPOINTScveiieiiiie et 65
Table 8: AdMIN ENAPOINTSc.iiieiieiecie sttt see e sreenenre e 66
Table 9: Player ENAPOINTS......cc.iiiiieeiicie sttt sttt e e sae e sreennenne e 67
Table 10: BOOt PErfOIMANCEciiiiiieciieieet et 76
Table 11: Educational Game Performancecooveiiireiiiieneinenees e 77
Table 12: Fun Game PerfOrmMAanCeccooiiiiiiiiiiesieeis e 78
Table 13: APP PerfOrMENCEcoiieiecie ettt sre e nre e 78
Table 14: AP FUNCHONAIILYc.ooiieece e 79
Table 15. Referenced DOCUMENTSc.ciiiiiiiiieitei ettt 85

viii

List of Acronyms and Glossary

Provide a list of acronyms and associated literal translations used within the document. List the
acronyms in alphabetical order using a tabular format as depicted below.

Table 1. Acronyms

Acronym Definition
UPM User and Product Manual
BOM Bill of Materials
UNSDG United Nations Sustainable Development Goals
PLA Polylactic Acid
COTS Commercial off-the-shelf
uSB Universal Serial Bus
GUI Graphical User Interface
IP Internet Protocol
PCB Printed Circuit Board
GPIO General-Purpose Input/Output
ADC Analog-to-Digital Converter
HDMI High-Definition Multimedia Interface
SSH Secure Shell)
URL Uniform Resource Locator
OS Operating System
CAD Computer-aided design

1 Introduction
This User and Product Manual (UPM) provides the information necessary for
administrative users to effectively use the BusyPad 3.0 and for prototype documentation.

This document represents a comprehensive user manual for the BusyPad 3.0. This
document should be used alongside the device to understand and operate the BusyPad effectively.
The report is broken down into many key sections to aid the user in the operation of the device.
First a general overview and explanation of the device is presented along with added context for
understanding the project and the need for such a device to benefit the intended users. In addition,
standard industry conventions, cautions and warnings are included to ensure directions are clear
and all users remain safe while operating the device.

Next the manual covers startup up and shutdown procedures of the system to ensure
optimal loading times and to minimize the power draw from the external power cord. The
document will explain considerations to take before setting up the device, and any required access
considerations should they be required with the necessary steps to set up the device, access the
application and exiting the system should the user be finished with device operations. The report
will discuss using the system focusing on specific function and subfunctions of both hardware and
all connected components and peripherals, and the frontend and backend software’s. This way
more technical users will understand the operation of the device should troubleshooting be
required.

Next, the manual covers troubleshooting and support. Should any errors occur, the extensive
list of support provided in the document should aid users in effectively finding a solution. The
software is very robust, however due to the nature of open-sourced software there may be
unintended errors that occur. As precautionary measures, we advise in referring to the
documentation should any error occur. If problems continue to persist the contacting Flipped Toys
for further information may be necessary.

Finally, the manual includes all necessary supporting documentation for the BusyPad3.0. This
includes the Bill of Materials, Equipment & Component List, detailed operational instructions,
and all testing and validation information for the device. As the device is open-sourced, it is our
obligation to provide all information to ensure clarity and transparency to all users intended or
otherwise. The hope is to have the next generation learn from the developments made on te
BusyPad 3.0 and take their knowledge of engineering and electronics to take the device to another
level supported by suggestions of the client Flipped Toys.

2 Overview

The client for the project is Demsey Kirkwood of Flipped Toys. Flipped Toys is a startup
based in Ottawa that has the goal of developing educational toys powered by open-sourced
software. The flagship product of the company is the BusyPad, a fun handheld toy that can suit the
needs of many users through variability as its core functionality. The device allows users to switch
between educational and recreational games through an open-sourced platform. The goal of the
product and the team’s contribution to the project is to provide and engaging educational
experience through educational games as a learning medium. This aligns with the UNSDGs of
Quiality Education, ensuring everyone has access to quality education and Decent Work and
Economic Growth ensuring that all individuals have the necessary skills to acquire decent jobs.

Though the BusyPad competes in a competitive market with similar products such as the
Amazon Fire Kids 10, Game Activity Pad, iPad, etc. the product sets itself apart due to its many
key features. Namely the device with its open-sourced capabilities and use of simple COTS
components places it in a price bracket that makes it far more affordable to all families. In
addition, the variability of the device gives it far more interesting and engaging educational games
then competing products. Finally, the device is designed with sustainability in mind, which is an
important factor that new customers often consider when choosing between similar products.

Figure 1: BusyPad 3.0 Device

The BusyPad 3.0 prototype solution can be seen in the Figure above. The device is a simple
educational gaming system composed of three key areas: Enclosure, Hardware and Software
(frontend and backend).

Enclosure:

The enclosure is a simple two piece shell made of PLA filament, manufactured using the 3D printers
available at the MakerSpace. The two shells are designed to fit all peripheral components and to
include additional space for running wires and the future inclusion of an internal battery. The design,
as requested by the client is similar in for to a Simon Says, offering its own identity.

Hardware:

The hardware is based around the use of a Raspberry Pi Zero 2W, acting as the information
processor of the device. Connected to the Zero 2W includes many input buttons and an analog
joystick alongside a capacitive 4.3’ touchscreen display. The hardware is further described later in
the report

Software:

The software is robust and includes both the front end and the back end. In brief, the software has
been used to develop the companion app for the device, the optimization and functionality of the
games, and the communication between the two. The exact walkthrough of the software is further
explained in later sections.

2.1 Conventions

The use of the device is straightforward, however a detailed explanation of the set up of the
BusyPad 3.0 and its companion app are discussed in detail in the following section of the report. It
must be stated here that the instructions provided do NOT call to direct action, however they guide
the user through the operation of the device. By following each step carefully there should be no
issues encountered by the users. For context, improvement of the usability of the device was a major
accomplishment of the current iteration over previous models.

2.2 Cautions & Warnings

If applicable, identify any cautions or warnings that the user should know about before using
the system. If waiver use or copy permissions need to be obtained, describe the process.

The device is compact and robust, however dropping it may result in serious damage to
internal components, specifically electrical wires that have been soldered together. Users should
take caution when handling the device as they would any other handheld electronic. In addition, the
device is powered externally, as such, users must take caution when dealing with electricity and live
outlets. Though low powered, the current running through the device could result in harm if
improperly plugged into and outlet or capable become loose due to strain on the device. The device
should NOT be used for reasons outside of its intended purposes.

3 Getting started

3.1 Set-up Considerations

BusyPad 3.0 is an open-source educational device designed to offer a safe, engaging learning
experience for children. The setup instructions below explain how to prepare and use the device.

1. Equipment and Power

BusyPad 3.0 is not battery operated. It must be connected to a stable power source via the attached
USB cable. To power the system, connect the USB cable to one of the following:

e A standard wall adapter (5V recommended)
e A powered USB port (e.g., on a computer or charging hub)

Note: The device will not operate without being connected to a power source.

Figure 2: BusyPad 3.0 attached power USB cable

2. Internet Connection
A constant and stable internet connection is required. BusyPad 3.0 uses this connection to:

e Load educational content and updates
e Enable interactive learning features

e Sync data and progress

Be sure the device is within range of a working Wi-Fi network.
3. Physical Configuration and Input/Output Devices
BusyPad 3.0 incorporates a user-friendly physical interface that includes:

o Central Touchscreen Display: The main visual output and interactive touch input.

e Color-coded Physical Buttons and Joystick Controls: For navigation and command
selection.

e Built-In Speakers: Provide audio cues and instructional feedback.

e USB Cable Connector: For power and system updates.

4. System Configuration

No additional software installations are required from the user. Once the device is powered and
connected to the internet, it will automatically display the home screen and guide you through the
remaining setup steps.

Connecting to Wi-Fi Using WPA_GUI

WPA_GUI is a graphical interface used to manage Wi-Fi connections on Linux-based systems. It
provides an easy way to scan for available networks, connect to them, and configure wireless
settings without using the command line. This tool is included with BusyPad 3.0 to simplify the
setup process for users.

For more detailed instructions and troubleshooting, you can refer to the official WPA_GUI
documentation at:
https://wiki.archlinux.org/title/Wpa_supplicant

If BusyPad 3.0 is not already connected to a Wi-Fi network when it starts, you will need to use the
built-in Wi-Fi configuration tool called WPA_GUI. Follow the steps below to connect:

When the system boots, open the application labeled ‘wpa_gui'.

In the WPA_GUI window, make sure the correct adapter is selected (usually ‘wlan0").
Click the 'Scan' button to search for available Wi-Fi networks.

A new window will appear showing available networks. Select your preferred network and
click 'Connect'.

A w e

https://wiki.archlinux.org/title/Wpa_supplicant

If prompted, enter the network password (PSK) in the field provided and confirm the
encryption method is set to 'CCMP'. Then click 'OK' or 'Save'.

Once connected, the 'Current Status' tab will show 'Completed (station)' and display the IP
address assigned to the BusyPad.

You can now close the WPA_GUI window using the top right close button.

File Network Help

Adapter wian0
Network 1: AAST

Current Status Manage Networks WPs

Status Completed (station)

Last message: init=COUNTRY_IE type=COUNTRY alphaz2«CA
Authentication: WPA2-PSK

Encryption CCMP

SSID AAST

BSSID. €6:50:9¢:5e:79:91

IP address 10.0.0.44

Connect Disconnect

Figure 3: Opening the WPA_GUI application

Q

File MNetwork Help

Adapter: wilan0
Network: 1: AAST
Current Status | Manage Networks = WPS

Status: Completed (station)
Last Message; :|||L-COU.‘,‘TR\"_IE [',-pl_'-COLINTFlY alphaz=CA

Authentication: WPA2-PSK
Encryption: CCMP

551D AAST

BS5ID: €309 5e:79:91
IP address: 10.0.0.44

Connect Disconnect

Figure 4: Clicking the 'Scan' button to search for Wi-Fi networks.

~ BSSID frequency signal

€6:50:9¢:5¢:,.. 2462 "5 461}

Scan

Connect Disconnect

Figure 5: Viewing available networks and signal strength

5510 AAST
Authentication | WPA2-Personal (PSK)

Encryption LOkiD

PSK |

EAP method
Identity

Password

Onboard

Figure 6: Entering the Wi-Fi password (PSK).

Eile Network Help

Adapter wilan0

Network 1: AAST

Current Status Manage Networks WPS

Status Completed (station)

Last message: init=COUNTRY_IE type=COUNTRY alpha2«CA
Authentication: WPA2-PSK

Encryption CCMP

SSID AAST

BSSID €6:50:9¢:5e:79:91

IP address 10.0.0.44

Connect Disconnect

Figure 7: Closing the WPA_GUI window after connection

BusyPad
Log In

Figure 8: BusyPad login screen asking for device code after network connection

3.2 User Access Considerations

BusyPad 3.0 is designed with two primary access points—the Parent Page and the Player Page—
to accommodate different user types and ensure a secure, personalized experience.

1. Parent Page

Account Creation: Parents or guardians create an account with a username and password
on the Parent Page.

Device Code: During the account creation process, a device code is generated. This code is
required for accessing the Player Page.
Parental Controls: Once logged into the Parent Page, parents can manage various settings,
including:

o Enabling or disabling specific games from appearing on the Player Page.

2. Player Page

Access via Device Code: Child users access the Player Page by entering the device code
provided by the parent.

Interface for Children: The Player Page is designed specifically for young learners,
displaying age-appropriate games and activities that the parent has enabled.

Restricted Permissions: Child accounts are limited to educational content only and cannot
modify system settings or access external websites.

3. Administrator (Device Maintainer)

Device Setup and Maintenance: The administrator (often a parent or guardian) has full
rights to update the system, troubleshoot issues, and manage network settings.
Authentication: Access to administrative features requires secure authentication, ensuring
that only the designated administrator can make system-wide changes.

This guide ensures that even non-technical users can easily understand the steps to set up BusyPad
3.0, create accounts, and manage the learning environment for children while maintaining safety
and control.

3.3 Accessing the System

To access and begin using the BusyPad 3.0 system, follow the instructions below:

10

1. Power on the device by connecting the USB cable to a wall adapter or USB port.

2. Ensure the device is connected to Wi-Fi. If not already connected, follow the WPA_GUI
instructions provided earlier.

3. BusyPad 3.0 has two primary access points: the Parent Page and the Player Page.

Parent Page Access:

e On the login screen, parents must enter their registered email address and password.
e If a parent does not yet have an account, they can click 'Sign Up' to register. The
registration form requires:
o Email address
o Password and confirmation
o A device code to link the account to the specific BusyPad unit
o After signing up, parents can log in to manage user settings and parental controls.
o If a parent forgets their password, they can use the 'Forgot Password' link on the login
screen to reset it by following the on-screen instructions.

Player Page Access:

e Children access the system using the Player Page by entering the device code provided
during parent setup.

e This will load the child-friendly interface with only the enabled games and content.

e Currently, the virtual keyboard functionality is not fully integrated with the application. As
a workaround, users can press right arrow key followed by the "X" key to
automatically input a saved device code.

The login and registration process is designed to be quick and secure, ensuring that both children
and parents can safely access their respective features.

11

12

Figure 9: Parent Login Screen: Enter email and password to access parental controls

Figure 10: Parent Registration Screen: Sign up with email, password, and device code

BusyPad
Log In

ter Device

Figure 11: Player Page Login: Enter the device code to access child-friendly content

3.4 System Organization & Navigation

Below is an overview of the system’s main pages and how users navigate between key
features.

1. Parent Home Page (Parent Account)
Parent accounts are directed to the Home page after logging in, where they can view a
list of all available games. Games can be filtered by category (e.g., educational or fun).
While admin users cannot play games directly from this page, they can review all content
available on the platform.

2. Player Home Page (Player Account)
Players are directed to the Player Home after entering a valid device code. This page
displays only the games they are authorized to play. Users can filter games by category
and launch games directly in full-screen mode.

3. User Setting — Parental Control
Admin users have access to this page by clicking the user avatar in home page. In this

page they can control which games are accessible to specific devices or users. Each game
has an on/off toggle switch that allows the admin to enable or disable access as needed.

13

4. About Page

This page provides background information about BusyPad — including its purpose,
how it works, and the benefits it offers to young learners and educators.

5. Log out

Click “Log Out” in the top-right corner of the navigation bar to securely sign out of the
system and return to the login page.

3.5 Exiting the System
To properly exit or shut down the BusyPad 3.0 system, follow these steps:

1. From the main interface, navigate to the logout option and select it to safely sign out of the
current user session.

2. Once you are logged out, disconnect the device from the power source by unplugging the
USB cable from the wall adapter or USB port.

This ensures that the device is safely powered down and ready for future use.

14

4 Using the System

4.1 Registering an Account

Open the BusyPad parent login page and click the Sign-Up link at the bottom to go to the
registration page, which is shown in figure.

Figure 12: Sign-up Page

There are five input fields on the page, which are:

1. Emal Address: Enter a valid email address. This will be used for parent account logging
in. The system will check if the format is correct (e.g., user@example.com).

2. Your Name: Input your display name. This field is required and cannot be left empty.
Password: Choose a secure password. It must be at least 6 characters long.

Confirm Password: Re-enter your password to make sure it matches. If the two passwords
do not match, an error message will appear.

5. Device Code: The Device Code is the unique identifier of the BusyPad device, used for
player account login on the device.

All five input fields are required. After filling out all required fields, click the Register
button. If there are any issues with your input, the system will display error messages.

4.2 Logging into Your Account

There are two types of login interfaces to support both parents and players. Each type of
account has its own purpose and login flow.

15

. Parent Account Login

To log in with a parental account, you need to enter your Email Address and Password.
Upon successful login, you will be directed to the Parent Account Home Page. The parent account
login page is fully responsive and can be accessed from any device, including mobile phones,
tablets, and desktop computers.

. Player Account Login

The Player Account must be logged in on the toy device. On the login page, users only need
to enter the Device Code. Upon successful login, the system will redirect you to the Player
Homepage.

4.3 Parental Control Function

The Parental Control feature allows parents to add or remove games that the corresponding
player account can access from their home page.

After logging in, the Parent Account will be directed to the page shown in the figure. In the

top-right corner, the user’s avatar is displayed. Clicking on the avatar will take the user to the
Parental Control page, as shown in the next figure.

BusyPad A e About -xv Log Out

Memory Game 2048 Flappy Bird Lost Treasure

Simon Says Game

@ ,o.

Figuré 13: Home Paige for Parent Account

16

On the Parental Control page, all games from the game library are listed. Each game has a
toggle switch next to it. By turning the switch on or off and clicking the Save Changes button, the
parent can control whether the game is accessible or restricted on the player’s home page.

Parental Control

Simon Says Game

Spellie

Times Tables Flashcards

Figure 14: Parental Contral Page

4.4 Playing Games

After logging in on the toy device, the Player Account will be directed to the Player

Homepage. This page displays only the games that the Parent Account has allowed access to
through the Parental Control settings.

J Playing a Game

After logging in, the Player user is directed to the homepage, as shown in the figure. On this

page, each game is displayed as a card containing the game image, title, and description. Below
each game card, there is a “PLAY NOW” button.

17

BusyPad Games Log Out

P —
| AU Categories ~

B

Memory Game 2048 Flappy Bird

Figure 15: Home Page for Player Account

Clicking the “PLAY NOW?” button will take the user to the corresponding game page, as
shown in the next figure. The player can use buttons, a joystick, or the touch screen on the toy
device to play games.

Simon Says Game

Simon Says Game

Figure 16: Playing Game Page
Click “Back to Games” on the game page to go back to the Player’s game list.

18

. Filtering Games by Category

On the Player Homepage, there is a filter dropdown located at the top-right corner of the
screen. The filter includes three options: All, Educational, and Fun.

By selecting one of these options, the player can view games that belong to the
corresponding category.

19

5 Troubleshooting & Support

5.1 Error Messages or Behaviors

If the device fails to connect to Wi-Fi or the on-screen virtual keyboard does not appear
when needed, the recommended first step is to restart the system.

Inconsistent behavior in loading the Player or Parent login screens may be due to poor or
lost internet connection.

If games fail to load or buttons do not respond, ensure that the internet connection is active
and the USB power cable is securely connected.

If the screen remains black after powering on, check the power source and ensure the USB
cable is not damaged.

5.2 Special Considerations

Currently, the virtual keyboard functionality is not fully integrated with the application. As a
workaround, users can press any arrow key followed by the X' key to automatically input a saved
device code.

All BusyPad applications and content are hosted on the internet. A reliable and continuous
internet connection is essential for accessing games, logging in, and syncing progress. If the
system is offline, key features will not be available.

5.3 Maintenance

20

Ensure the device is stored in a dry, dust-free environment.

Clean the screen and buttons gently with a soft, dry cloth.

Periodically check for firmware or application updates (if update notifications are
enabled).

Verify the USB cable and buttons are functioning properly; replace any damaged hardware
as needed.

5.4 Support

If you experience an issue that cannot be resolved through a system restart or checking hardware
connections, you may request assistance.

Please contact Mr. Mahmoud Mohamed at mmoha409@uottawa.ca

When requesting support:

e Describe the issue clearly
e Include a picture of the problem, if possible
e Mention any error messages or behaviors you observed

This will help the support team provide you with the fastest and most effective assistance.

21

mailto:mmoha409@uottawa.ca
mailto:mmoha409@uottawa.ca

6 Product Documentation

6.1 Hardware System

Table 2: Bill of Materials

BOM (Bill of Materials)

22

Equipment list
1.

2.

Soldering Station

Wire Cutters

Hot Glue Gun

Electrical Tape

Item # Code/SKU Product Name UnitCost |Quantity | Total Cost
1 283 Male to Femal Jumper Cables x40 $ 2.95 1 § 295
MCP3008 - 8-channel 10-bit ADC with SPI

2 2 Interface $ 5.95 1 $§ 595

3 802 Mini HDMI Plug to Standard HDMI Jack Adapter | $ 3.45 1 $ 3.45

4 1019 MicroSD Card-64 GB - Class - 10 $ 1295 1 $ 12.95

5 CS_PID-3 Mini-HDMIto HDMI cable - Gold Plated - 3Ft | § 3.95 $ 3.95

Analog 2-axis Thumb Joystick with Select
6 1675 Button $ 2.95 $ 295
7 505-1 Breadboard Wiring Kit $ 8.45 $ 8.45
Colorful Round Tactile Button Switch

8 1527-1 Assortment x 15 $ 8.95 1 $§ 8.95

9 112-1 Raspberry Pi Zero 2 W with Header $ 25.45 1 $ 25.45
10 N/A Breadboard $ - 1 $ -

4.3in HDMI LCD 800x480 IPS Capacative Touc
11 N/A Screen $ 6499 1 $ 64.99
Total Before

Tax: $ 140.04

Total Tax: $ 18.45

Shipping: 3 2.00

Grand Total $ 160.49

5. Heat shrink Tubing

6. SSH Client (PUTTY)

Instructions

.

www.eTechnophiles.com

3.3v Q ‘ sV
GPIO 2 Serial Data (12C) ‘ 0 sv
6PI03 serial Clock (12¢)| (@) @ [6rovre
GPIO 4 ' ‘ GPIO 14 (UART TX)
Ground ‘ . GPIO 15 (UART RX)
GPIO 17 Chip Enable-CE1 (SPI1 . . GPIO 18 Chip Enable-CEO (SP1) [PWM]
erio 27| @) @ |croune
GPIO 22 . ‘ GPIO 23
3.3v ’ ‘ GPIO 24
GPIO 10 MOSI (SP1 0) ‘ . Ground
GPIO 09 MISO (SP1 0) . . GPIO 25
GPIO 11 SCLK (SPI o)l‘ ‘ GPIO 8 Chip Enable-CEO (SPI0)
Ground . ’ GPIO 7 Chip Enable-CE1(SPIO0)
GPIO 0 EEPROM Serlal DATA (12€) . ‘ GPIO 1 EEPROM Serial Clock (12C)
GPIO S . . Ground
GPIO 6 . ' GPIO 12 (PWM)
GPIO 13 (PWM) . ' Ground
[PWM] GPIO 19 MISO (SPI 1) . ‘ GPIO 16 Chip Enable-CE2 (SPI 1)
GPIO 26 . . GPIO 20 MISO (SPI 1)
Ground . . GPIO 21 SCLK (SPI 1)

Figure 17: Raspberry Pi Zero 2W Pin Out

The system’s hardware components are arranged in a structured manner to ensure efficient
signal flow, proper grounding, and readability. From the previous prototype to the current
iteration, hardware and electrical connections remian unchanged. This is due to the chosen
components working effectively to meet our requirements. For future iterations a custom built
PCB and internal power system would be the likely next steps. In addition, design for the
implementation of additional input methods or sensors may be considered. This will increase the

23

longevity of the device and the diversity of available games. The primary components and their
connections include:
e External Input Power (5V, 2A) — Supplies power to Raspberry Pi Zero 2 W.
e Raspberry Pi Zero 2 W — Manages GPIO connections and overall processing.
e 4.3 in. Capacitive Touchscreen
e Mini HDMI to HDMI Adapter — Connects Raspberry Pi to the capacitive touchscreen
display.
Control Inputs
e Joystick:
o X-axis — ADC — GPIO (e.g., GPIO17)
o Y-axis — ADC — GPIO (e.g., GP1027)
e Buttons:
o Button 1 — GPIO (e.g., GPIOS)
o Button 2 — GPIO (e.g., GPIO6)
o Button 3 — GPIO (e.g., GPIO7)
o Button 4 — GPIO (e.g., GPIOS)
o Button 5 — GPIO (e.g., GPIO9)
o Button 6 — GPIO (e.g., GPIO10)
o Button 7 — GPIO (e.g., GPIOI11)
o Button 8 — GPIO (e.g., GP1O12)

24

LR
e e e o
LR

~

Raspberry Pi
Model B (R2)

<
)
a
“
a
)

1

Video-Out

“« e e e
e e e o o
L)
L)
“ e o0 e
e e e 0

DR
e e e o o
CRCEC R

(Y¥3UYD) ISD

ETHERNET

e 0 00 e
LR
e e o e

L
e e o
L
LR
¢ e

fritzing

Figure 18: Joystick Connection

43 inch Touchscroen

Rasgperry i Zero 2W

Modudar Joyesek

Figure 19: Final Prototype Component Layout

25

Dedicated ground connections for ADC, buttons, and joystick to ensure stable operation
and minimize electrical noise. The layout is further detailed in the accompanying flow diagram for

all the major electrical connections:

(Input Power |
\
. /
Minl
HDMI to HDMI =+
Adapter
fepbarry P1Zem) i
_QDUO;\\; Zero),, Capacitive Touch
/ \ Screen
—_— S

ADC
Analgo to Digital
Converter
Cleult

1 1 — —
C But\zon 1. ;,\ C BL-IR-UH 2 _>' I_ -Bult-un 1) (_ Bu“_un 2 jl

i
1 1 —F L
TN W W W W
I‘\ Joystick /}I
CONCORCORCD
\ Butonl |} Button 2 Button 1 | Button 2
\ . \
Y A A 1 T
Ground, Ground, Ground, Ground Ground,

Figure 20: Electrical Decomposition

26

Figure 21: Final Prototype Hardware Implementation

\The Raspberry Pi Zero 2 W is equipped with multiple input controls, including 8 buttons, a
joystick, and touchscreen to facilitate user interaction. Each button is directly connected to the
Raspberry Pi’s General-Purpose Input/Output (GPIO) pins and configured as keyboard inputs
through the Pi’s settings. One of these buttons executes a script that enables backward navigation
in a web browser. Each button features a pull-down resistor configuration, ensuring proper signal
readings and avoiding floating GPIO states. The wiring structure includes:

e One end of each button is wired to a dedicated GPIO pin.

e The other end is connected to the ground to complete the circuit.

To maintain system stability and ensure reliable performance, the following considerations
have been implemented:

Proper Grounding: Ensures signal integrity and prevents floating states in GPIO
connections.

27

e Pull-down Resistors: Used on buttons to avoid unintended signal activation.

e Voltage Compatibility: Ensures ADC voltage levels are compatible with the Raspberry
Pi’s operating range.

¢ Signal Noise Reduction: Shielded cables are recommended for analog signal connections
to minimize interference.

This structured configuration and detailed layout provide a well-organized and professional

approach to designing an interactive Raspberry Pi-based control system.

Setting Up the Raspberry Pi Zero 2W for Kiosk Mode:
Step 1: Install Raspberry Pi OS Lite (Legacy 32-bit Bullseye)
1. Download Raspberry Pi OS Lite (Legacy 32-bit Bullseye) from the official Raspberry Pi
website.
2. Use Raspberry Pi Imager to flash the OS onto an SD card.
3. Before writing the image, configure the following settings in Raspberry Pi Imager:
a. Set a username and password for SSH access.
b. Enable SSH from Services
c. Enter Wi-Fi credentials (SSID and password) to enable network access after

installation.

28

Raspberry Pi Device Operating System Storage

CHOOSE DEVICE CHOOSE 08 CHOOSE STORAGE

Figure 22: Pi Imager Interface

Use OS customisation? X s,

Would you like to apply OS customisation settings? GENERAL SERVIcED OPTIONS

B | o

@ Use password authentication

s O Allow public-key authentication only
Set aut d_keys f

GENERAL SERVICES OPTIONS

[[] set hostname: xa
Set username and password

Username:

Password:
Configure wireless LAN

SSID:

Password:

[show password Hidden SSID

Wireless LAN country: CA -

Set locale settings

Time zone: Canada/Eastern -

Keyboard layout: us -

Figure 23: Pi Imager Interface

29

30

4. Download PUTTY SSH client
a. Check the router page to identify Raspberry Pi IP and Make sure you remember the IP

b. Put Raspberry Pi IP in the Hostname field and press open

i PUTTY Configuration

Category:
g,--Session Basic options for your PuTTY session
Logging Specify the destination you wantto connectto
- Terminal P y
. = Keyboard Host Name (or IP address) Port
- Bell h | |22
Features :)
= Window Connection type:
Appearance @ssH (OsSerial (O)Other. | Telnet
- Behaviour
Translation Load. save or delete a stored session
+-Selection Saved Sessions
Colours I
—-Connection
- Data Default Settings A Load
AAAAA Proxy 1EDUPI
+-SSH 2Pl Hole CA S
Serial Can0S WM =
- Telnet PTCg:\aa da Delete
Riogin PiHole Qatar b
SUPDUP
Close window on exit
OAways (O Never (@ Only on clean exit

Figure 24: PUTTY SSH Client Interface

Figure 25: Rapsberry Pi CLI

Step 2: Install Pi-Kiosk

1. Clone the Pi-Kiosk GitHub repository and install the kiosk application:
sudo apt install git -y

git clone https://github.com/DanTappan/Pi-Kiosk

cd Pi-Kiosk
Jinstall.sh [--browser browser]

2. The Pi-Kiosk installer automatically configures Openbox, a lightweight window
manager, instead of a full desktop environment to minimize resource usage.

3. During installation, you can choose to install Midori, a lightweight browser capable of
running JavaScript applications.

4. Atthe end of the installation, set a password to access the kiosk control panel.

31

https://github.com/DanTappan/Pi-Kiosk

5. Access the kiosk control panel at the Rasspberry Pi’s IP on your local network to set the
URL of the app

Kiosk Control

Password:

Kiosk URL: | https://dantappan.net/wp-cor || Set URL
Select: Ball v Select URL

Restart Kiosk Browser || Reboot Kiosk | Shutdown Kiosk

Figure 26: Kiosk Control Panel

Step 3: Configure Automatic Browser Launch and Network Check on Boot

Using the Openbox autostart File
e The /etc/xdg/openbox/autostart file is responsible for running startup scripts when the
Openbox window manager starts. This allows us to:
e Disable screen blanking and power management to keep the screen active.

¢ Run the network-check script to detect internet connectivity and prompt the user with Wi-
Fi settings if needed.

e Launch the browser in fullscreen mode upon startup.

e Enable a physical back button for navigation.
Editing the Autostart File:

1. Open the autostart file in a text editor:

sudo nano /etc/xdg/openbox/autostart

32

2. Modify the file to include the following:

Disable any form of screen saver / screen blanking / power management
xset s off
xset s noblank
xset -dpms
Allow quitting the X server with CTRL-ALT-Backspace
setxkbmap -option terminate:ctrl_alt_bksp
Change directory to the user's home folder
cd /home/edu
Start the virtual keyboard in the background
onboard &
Run the network check script to detect Wi-Fi status
./network-check.sh &
Enable the physical back button functionality
./midori_back2.py &
Set up port forwarding from port 80 to 8000 for the kiosk control page
sudo iptables -t nat -l PREROUTING -p tcp --dport 80 -j REDIRECT --to-ports 8000
Start the kiosk browser application in an infinite loop to restart it if it crashes
while true; do
Launch the kiosk script
./kiosk.py
done

3. Save the file (CTRL + X, then Y, then Enter).
Step 4: Automate Wi-Fi Setup if No Internet is Detected
Network Check Script (network-check.sh)
This script continuously checks for an internet connection and launches the Wi-Fi
configuration tool (wpa_gui) if no network is available.
1. Open the script file for editing:

sudo nano /home/edu/network-check.sh
2. Add the following script:

#1/bin/bash
while true; do
Check if Google is reachable
if ping -c1 google.com >/dev/null 2>&1; then
Kill wpa_gui and onboard if internet is available
pkill wpa_gui
pkill onboard
exit 0
else
Start wpa_gui if not already running

33

if | pgrep -x "wpa_gui" >/dev/null; then
wpa_gui &
fi
fi
Wait 5 seconds before retrying
sleep 5
done

3. Save the file and make it executable:

chmod +x /home/edu/network-check.sh
This ensures that the Wi-Fi setup tool will launch only if the Raspberry Pi does not have internet

access.

Step 5: Configure GPIO Buttons as Keyboard Inputs

To allow physical buttons to function as keyboard keys, modify the /boot/config.txt file.
1. Open the file for editing:

sudo nano /boot/config.txt

2. Add the following lines to configure GP1O pins as keyboard inputs:
Setup Arrow Keys
dtoverlay=gpio-key,gpio=12,active_low=1,gpio_pull=up,keycode=105 # Left Arrow
dtoverlay=gpio-key,gpio=1,active_low=1,gpio_pull=up,keycode=108 # Down Arrow
dtoverlay=gpio-key,gpio=25,active_low=1,gpio_pull=up,keycode=103 # Up Arrow
dtoverlay=gpio-key,gpio=24,active_low=1,gpio_pull=up,keycode=106 # Right Arrow
Setup Control Keys
dtoverlay=gpio-key,gpio=23,active_low=1,gpio_pull=up,keycode=57 # Spacebar
dtoverlay=gpio-key,gpio=18,active_low=1,gpio_pull=up,keycode=45 # X Key
dtoverlay=gpio-key,gpio=15,active_low=1,gpio_pull=up,keycode=63 # F5 Key

3. Save the file and reboot the Raspberry Pi:

sudo reboot

Step 6: Enable a Physical Back Button for Navigation

The back button script (midori_back2.py) allows a physical button connected to GPI1O 14 to

act as a "Back" button in the browser.

1. Open the script file for editing:

34

sudo nano /home/edu/goBack/midori_back2.py
2. Add the following Python code:

#!/usr/bin/env python3
from gpiozero import Button
import os
button = Button(14, pull_up=True)
def go_back():
Send Alt+Left to navigate back
os.system('midori -e tab-next')
os.system('midori -e tab-previous')
os.system('midori -e go-back')
button.when_pressed = go_back
while True:
button.wait_for_press()

3. Save the file and make it executable:

chmod +x /home/edu/goBack/ midori_back2.py

This script listens for a button press and sends a ""Back™ command to the Midori browser.
Step 7: Setting Up a Joystick

1. Enable SPI for Joystick Support
a. Open the Raspberry Pi configuration tool:

sudo raspi-config
b. Navigate to Interface Options — SPI and enable SPI.

2. Install Required Python Libraries

a. Install Python and the spidev library to communicate with the joystick via SPI:

sudo apt install python3 python3-pip -y
pip install spidev
3. Create and Run the Joystick Script

a. Open a new script file:
sudo nano /home/edu/joystick/arrow-joystick.py

b. Add the following code:

#!/usr/bin/python
import spidev
import os

import time

35

36

import subprocess

SPI setup

spi = spidev.SpiDev()

spi.open(0, 0)

spi.max_speed_hz = 1000000

Define Axis Channels

swt_channel =0

vrx_channel =1

vry_channel =2

Time delay for reading values

delay =0.1

Joystick thresholds

threshold_high = 700

threshold_low = 300

Function for reading the MCP3008 channel

def readChannel(channel):
val = spi.xfer2([1, (8+channel) << 4, 0])
data = ((val[1] & 3) << 8) + val[2]
return data

Track current state

current_keys = set()

Endless loop

while True:
Determine position
vrx_pos = readChannel(vrx_channel)
vry_pos = readChannel(vry_channel)
swt_val = readChannel(swt_channel)

Determine which keys should be pressed
keys_to_press = set()

X-axis (left/right)

if vrx_pos > threshold_high:
keys_to_press.add("Right")

elif vrx_pos < threshold_low:
keys_to_press.add("Left")

Y-axis (up/down)

if vry_pos > threshold_high:
keys_to_press.add("Down")

elif vry_pos < threshold_low:
keys_to_press.add("Up")

Release keys that are no longer being pressed

for key in current_keys - keys_to_press:
subprocess.run(["xdotool", "keyup", key])

Press keys that aren't already pressed
for key in keys_to_press - current_keys:

37

subprocess.run(["xdotool", "keydown", key])

Update current keys
current_keys = keys_to_press

Output for debugging
print("VRx: {} VRy: {} SW: {} Keys: {}".format(
Vrx_pos, vry_pos, swt_val, list(current_keys)

)

Wait
time.sleep(delay)
swt_val = readChannel(swt_channel)

Determine which keys should be pressed
keys_to_press = set()

X-axis (left/right)

if vrx_pos > threshold_high:
keys_to_press.add("Right")

elif vrx_pos < threshold_low:
keys_to_press.add("Left")

Y-axis (up/down)

if vry_pos > threshold_high:
keys_to_press.add("Down")

elif vry_pos < threshold_low:
keys_to_press.add("Up")

Release keys that are no longer being pressed

for key in current_keys - keys_to_press:
subprocess.run(["xdotool", "keyup", key])

Press keys that aren't already pressed
for key in keys_to_press - current_keys:

subprocess.run(["xdotool", "keydown", key])

Update current keys
current_keys = keys_to_press

Output for debugging
print("VRx: {} VRy: {} SW: {} Keys: {}".format(

Vrx_pos, vry_pos, swt_val, list(current_keys)

))

Wait
time.sleep(delay)

c. Save and make it executable:

chmod +x /home/edu/joystick/arrow-joystick.py
d. Run the script:

sudo python3 /home/edu/joystick/joystick.py
e. Add this line to /etc/xdg/openbox/autostart

cd /home/edu/joystick
sudo ./arrow-joystick.py

6.2 3D Design

The physical housing of the BusyPad 3.0 prototype is a two-piece solid shell made of PLA
filament with layer height set to 0.4mm to ensure acceptable precision in the produced piece. The

set parameters and rendering of the component for 3D printing in the CURA software can be seen
in the following figure:

38

Print settings X

Profile Draft Quality * v 5 B
r =

=. Quality v

Layer Height @ H |oa mm

Walls v

Wall Thickness 16 mm
Wall Line Count 2

Horizontal Expansion -0.04 mm

IL Top/Bottom v

Top/Bottom Thickness 1.2 mm

Top Thickness S £ 10 mm
Top Layers 3

Bottom Thickness S £ 10 mm
Bottom Layers 3

B3 1nfill ™

¢ Recommended

Figure 27: CURA 3D Design Parameters

It is suggested in future iterations to use alternative manufacturing processes or the use of
different filaments to provide greater detail (especially with the incorporation of rounded fillets)
and to promote sustainability. For example, resin molding may be the optimal solution as it will
allow production of multiple batches of BusyPad enclosures at one time. It must be noted that the
client would have been satisfied with an enclosure made of light wood through laser cutting,

however as mentioned the rapid prototyping was necessary for ensuring all tolerances were met.

The top shell is a thin curved piece with a height of 10 mm and depth of 8mm. It includes
extruded cuts to allow for opening and attachment of the eight buttons, swappable joystick, and
capacitive touchscreen display. The previous version had 4 auxiliary buttons underneath the screen
and d-pad installation location. Changes were made to have the 4 buttons on the left side perform
the d-pad function (up/down, left/right) to simplify the design. Removal of 2 buttons on the right

side was done to limit unnecessary components. Another change was to increase the overall size of

39

the prototype, changing the diameter from 180mm to 200mm. This necessary change gives more

space in the enclosure to fit all necessary electronics and cables.

The bottom plate is a thicker shell at 40mm height and 35mm depth. It incorporates an offset
ridge to allow attachment between the two sections with a thickness set to 1.5mm. A raised shelf is
built into the base with 4 circular pegs to support the screen (or in the future, incorporation of a flat
lithium-ion battery). A drilled cutout of %2 was added for the external power cable. This iteration
incorporates a through hole to fit the cable dimensions. The CAD assembly of the BusyPad 3.0 is
on the next figure:

Action
Buttons

Directional
Inputs

Capacitive
Touchscreen

Analog Joystick

Figure 28: BusyPad 3.0 CAD Assembly

The initial prototype attempted to use PLA screws to attach both shells, however this did
not work so a simple resting design that makes use of gravity to secure both components will be
used for the updated prototype. This way the top shell can be easily removed for troubleshooting

the electrical components or mechanical input methods.

40

Offset ridge allows for
attachment of top and
bottom plate

Space for internal battery Raised shelf supports screen

and cables

Figure 29: BusyPad 3.0 CAD Assembly Side View

Included is additional schematic containing the orthographic sketches of the final prototype.

This way we can get a better understanding of the internal and external layout at different angles.

] D
- C
T T lﬁ i
n == T
i | ———— I
B B
A A

" Assem 1_Rev4

Figure 30: BusyPad 3.0 Orthographic Sketches

41

. Equipment list
Included is the detailed list of all components required to manufacture the 3D enclosure for

the current working BusyPad 3.0 prototype:

Table 3: Required Components

Item # Component Name | Quantity
Ultimaker 2+ (0.8
1 nozzle diameter) 1
Basic 3D Printing
Training Certificate
2 CEED 1
CURA5.8.1 (or later
3 versions) 1
PLA filament (color of
4 choice) 1
SD Card to USB
5 adapter 1
6 SD Card 1
7 Top Shell 1
8 Bottom Shell 1
9 Joystick 1
10 Buttons 8

. Instructions
For the purposes of 3D printing in the MakerSpace it is required that all student must have

completed the basic 3D printing workshop to gain access. A list of available workshops and dates

42

can be found on the MakeRepo home page or at https://simpli.events/u/uottawaceed. Once training

is completed students are given full access to the available printers.

The next step is to download and set up the desired slicer software. For the Ultimaker 2+
the software CURA is all that is required to do the slicing and it can be found at

https://ultimaker.com/software/ultimaker-cura/ for free to all users. With the software downloaded

and started, all that is required is to upload any STL files from your desktop or removable drive so
that you may begin slicing and creating the g-code needed for the printer to create the 3D model.

CAD software’s such as SolidWorks and AutoCAD can save 3D models directly as STL files.

When 3D printing it is also important to understand the various print settings, or adjustments
the user can make to ensure both a fast and efficient print. This report will not go into depth on the
selections the user can make as it is expected that you will learn such things during the workshops.
Included however, in the figure below, is the layout of the customizability options the user can

make.

43

https://simpli.events/u/uottawaceed
https://ultimaker.com/software/ultimaker-cura/

Print settings X

Profile Draft Quality * v S ®
0 =
= Quality v
Layer Height CD O 0.4 mm
Walls v
Wall Thickness 1.6 mm
Wall Line Count 2
Horizontal Expansion -0.04 mm
=.. Top/Bottom v
Top/Bottom Thickness 1.2 mm
Top Thickness O f; 1.0 mim
h
5] Top Layers 3
Bottom Thickness O f; 1.0 mim
Bottom Layers 3
& 1nfill v

{ Recommended

Figure 31: 3D Design Print Settings
Once the g-code has been created, it is time for printing. The process is simply saving the

g-code to an SD card and taking said SD card to the assigned printer. Each printer has limited

44

menus that the user can navigate through, however all that is required for your purposes is to

select your desired file, wait for the printer to warm up, and finally begin printing your model.

6.3 Software System

The software system follows a frontend-backend separation pattern. The following sections

provide separate overviews of the frontend and backend.

. Frontend

The frontend of BusyPad software system is built with React.js using a component-based

architecture. It handles page navigation with react-router-dom. The frontend structure overview

shows in figure:

src/

}— components/ # Resuable UI components(Navbar, GameCard, etc.)

}— pages/ # Page-level components (Login. Home. Register, etc.)
}— css/ # Style files for pages and components

}— services/api.js # frontend API interactions

L— App.jsx # main entry point frontend (Rouying and user session)

Figure 32: Frontend Structure Overview

The main frontend stacks used in the project includes:

e Vite
° React
o React Router DOM

e React Bootstrap

45

46

e AXios

Components

All reusable Ul elements are in the /src/components/ directory. Key components
include Navbar, which provides navigation and user controls for parent account;
PlayerNavbar ia a simplified version for player account; GameCard is for displaying game
details with play (for patent account) and lock status (for player account); and Aurora, a
custom animated background component built with WebGL (ogl) for visual enhancement
on login and registration pages. New Ul components should also be placed in this directory

to maintain project structure and consistency.
Pages

The /src/pages/ directory contains all the page level components. Key pages include Login
and DevicelLogin, which handle user authentication for parent and player account
respectively; Home and PlayerHome, which serve as dashboards for viewing and interacting
with games; Register, where new users can create accounts and link a device code;
UserManagement, which allows admin users to control game access through toggles; and
About, which briefly introduces the BusyPad platform. Each page typically uses reusable
components and handles its own data fetching and state logic. All route definitions for these

pages can be found in App.jsx.

App.jsx

The App.jsx file serves as the main entry point of the frontend application. It sets up all
routes using react-router-dom, initializes the user session from localStorage, and protects
restricted pages through a custom ProtectedRoute wrapper. To add a new page or update
route access, changes should be made in this file.

47

Services/app.js

Handles all frontend API requests, including user login, registration, game data fetching,

and token storage.
Set-up Instructions

GitHub Link: Code of Frontend

1. Clone the repository
2. Install all dependencies

npm install

3. Start the development server

npm run dev

4. Access the web application: Open browser and go to http://localhost:5173

Suggestions for Future Development

e Improve error handling in login and register pages

e Increase font sizes and page layout of Ul for toy device screens

e Enhance the About page by adding more product-related information and details about
BusyPad’s purpose and features

e Add functionality to allow users to change their password

https://github.com/Joyceeee-dot/busy_pad
http://localhost:5173/

° Backend

This part provides comprehensive instructions for setting up, configuring, and using the Game
Management API backend. The backend is built with FastAPI and Firebase, providing secure

endpoints for game management and player access.

System Requirements

Before proceeding with installation, ensure your system meets the following requirements:

e Python 3.9 or higher

e Pip (Python package manager)

e Git

e Internet connection for accessing Firebase services
e Firebase account with Firestore database

Installation

6.4 Clone the Repository

git clone https://github.com/InterVam/GAMEAPI.git

cd GAMEAPI

. Create Virtual Environment

Windows:

python -m venv venv
venv\Scripts\activate

macOS/Linux:

48

https://github.com/InterVam/GAMEAPI.git
https://github.com/InterVam/GAMEAPI.git

python -m venv venv

source venv/bin/activate

o Install Dependencies
pip install -r requirements.txt

Configuration

Firebase Setup

Create a Firebase project at firebase.google.com
Set up Firestore database in your project
Generate Firebase Admin SDK credentials:
Navigate to Project Settings > Service Accounts
Click "Generate New Private Key"

Save the JSON file securely

Environment Variables

No ok wdE

Create a . env file in the project root with the following variables:

SECRET_KEY=your_jwt_secret_key

FIREBASE_CREDENTIALS BASE64=your_base64 encoded_firebase credentials

To encode your Firebase credentials:

Windows (PowerShell):

[Convert]::ToBase64String([System.Text.Encoding]::UTF8.GetBytes((Get-

Content -Raw path\to\firebase-credentials.json)))

49

https://firebase.google.com/

macOS/Linux:

base64 -w @ path/to/firebase-credentials.json

Running the API
Development Mode

uvicorn app.main:app --reload

Production Mode

uvicorn app.main:app --host 0.0.0.0 --port 8000

The API will be available at:

e http://localhost:8000
e Interactive documentation: http://localhost:8000/docs

API Usage

Authentication

. Admin Signup

Endpoint: POST /auth/signup

Request Body:

"email": "admin@example.com",

50

http://localhost:8000/
http://localhost:8000/docs
mailto:admin@example.com

51

"password": "securepassword",

"name": "Admin User"
}
Response:
{
"id": "user_id",
"email": "admin@example.com",
"name": "Admin User"
}
Admin Login

Endpoint: POST /auth/token

Request Body:

"email": "admin@example.com",

"password": "securepassword"

mailto:admin@example.com
mailto:admin@example.com

52

Response:

"access_token": "eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVvCJ9...",

"token_type": "bearer"

Device Authentication

Endpoint: POST /auth/device

Request Body:

"device code": "DEVICE123"

}

Response:

{
"access_token": "eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVvCJ9...",
"token_type": "bearer"

}

Game Management (Admin)

° Add New Game

Endpoint: POST /admin/games

Headers:

Authorization: Bearer YOUR_ADMIN_TOKEN

Request Body:
{
"name": "Math Adventure",
"category": "Educational",
"description”: "Learn math through fun puzzles",

"url”: "https://example.com/games/math",

"image_url": "https://example.com/images/math.jpg"

"is playable": true

53

https://example.com/games/math
https://example.com/images/math.jpg

54

Response:

{
"id": "game_id",
"name": "Math Adventure",
"category": "Educational",
"description": "Learn math through fun puzzles",
"url": "https://example.com/games/math",
"image_url": "https://example.com/images/math.jpg"
"is _playable": true

}

Get All Games

Endpoint: GET /admin/games

Headers:

Authorization: Bearer YOUR_ADMIN_TOKEN

https://example.com/games/math
https://example.com/images/math.jpg

55

Response:

[

{
"id": "game_id_ 1",
"name": "Math Adventure",
"category": "Educational",
"description": "Learn math through fun puzzles",
"url": "https://example.com/games/math",
"image_url": "https://example.com/images/math.jpg",
"is playable": true

}s

{

"id": "game_id_2",

"name": "Science Quest",

"category": "Educational",

"description"”: "Explore science concepts”,

"url": "https://example.com/games/science",

"image url": "https://example.com/images/science.

ipg

"is playable": false

https://example.com/games/math
https://example.com/images/math.jpg
https://example.com/games/science
https://example.com/images/science.jpg

56

Get Game by ID

Endpoint: GET /admin/games/{game_id}

Headers:

Authorization: Bearer YOUR_ADMIN_TOKEN

Response:
{
"id": "game_id",
"name": "Math Adventure",
"category": "Educational",
"description"”: "Learn math through fun puzzles",

"url": "https://example.com/games/math",

"image_url": "https://example.com/images/math.jpg"

"is playable": true

https://example.com/games/math
https://example.com/images/math.jpg

57

Update Game

Endpoint: PUT /admin/games/{game_id}

Headers:

Authorization: Bearer YOUR_ADMIN_TOKEN

Request Body:

{
"name": "Math Adventure 2.0",
"category": "Educational",
"description": "Updated math puzzles”,

"url": "https://example.com/games/math2",

"image_url": "https://example.com/images/math2.jpg",

"is playable": true

Response:

"id": "game_id",

https://example.com/games/math2
https://example.com/images/math2.jpg

58

"name": "Math Adventure 2.0",
"category": "Educational",
"description": "Updated math puzzles",

"url": "https://example.com/games/math2",

"image url": "https://example.com/images/math2.jpg",

"is_playable": true

Toggle Game Availability

Endpoint: PATCH /admin/games/{game_id}/toggle

Headers:

Authorization: Bearer YOUR_ADMIN_TOKEN

Response:
{
"id": "game_id",
"name": "Math Adventure",

https://example.com/games/math2
https://example.com/images/math2.jpg

59

"category": "Educational",
"description"”: "Learn math through fun puzzles",

"url": "https://example.com/games/math",

"image url": "https://example.com/images/math.jpg",

"is playable": false

Delete Game

Endpoint: DELETE /admin/games/{game_id}

Headers:

Authorization: Bearer YOUR_ADMIN_TOKEN

Response:
{

"message": "Game deleted successfully"
}

https://example.com/games/math
https://example.com/images/math.jpg

60

Get Games by Category

Endpoint: GET /admin/games/category/{category}

Headers:

Authorization: Bearer YOUR_ADMIN_TOKEN

Response:

"id": "game_id_1",

"name": "Math Adventure",
"category": "Educational",
"description"”: "Learn math through fun puzzles",

"url": "https://example.com/games/math",

"image url": "https://example.com/images/math.jpg"

"is_playable": true

}s

"id": "game_id_2",

"name": "Science Quest",

https://example.com/games/math
https://example.com/images/math.jpg

"category": "Educational",

"description"”: "Explore science concepts"”,
"url": "https://example.com/games/science",
"image url": "https://example.com/images/science.jpg",

"is playable": false

Player Access

. Get Playable Games

Endpoint: GET /player/games

Headers:

Authorization: Bearer YOUR_DEVICE_TOKEN

Response:

61

https://example.com/games/science
https://example.com/images/science.jpg

62

{
"id": "game_id_ 1",
"name": "Math Adventure",
"category": "Educational",
"description": "Learn math through fun puzzles",
"url": "https://example.com/games/math",
"image_url": "https://example.com/images/math.jpg",
"is _playable": true

}

]

Get Specific Playable Game

Endpoint: GET /player/games/{game_id}

Headers:

Authorization: Bearer YOUR_DEVICE_TOKEN

Response:

https://example.com/games/math
https://example.com/images/math.jpg

"id": "game_id",

"name": "Math Adventure",

"category": "Educational",

"description"”: "Learn math through fun puzzles",

"url": "https://example.com/games/math",

"image url": "https://example.com/images/math.jpg",

"is_playable": true

Troubleshooting

° Common Installation Issues

Table 4: Common Installation Issues

Issue Solution

"ModuleNotFoundError: No module named Run pip install fastapi

‘fastapi™

63

https://example.com/games/math
https://example.com/images/math.jpg

"ModuleNotFoundError: No module named

'uvicorn

Run pip install uvicorn

"No such file or directory: 'requirements.txt™

Ensure you're in the correct directory

o Configuration Issues

Table 5: Configuration Issues

Issue Solution
"Firebase credentials invalid" Verify your base64-encoded credentials are correct
"Secret key must be provided" Check that your .env file contains SECRET_KEY
"Permission denied" Ensure Firebase service account has appropriate
permissions

64

° Runtime Issues

Table 6: Runtime Issues

Issue

Solution

"Address already in use"

Change port with --port 8001

"Could not validate credentials"

Ensure you're using the correct token

"JWT token has expired"

Request a new authentication token

APl Reference

. Authentication Endpoints

Table 7: Authentication Endpoints

Endpoint Method

Description Authentication

/auth/signup POST

Create admin account None

65

/auth/token POST Get admin JWT token None
/auth/device POST Register device None
. Admin Endpoints

Table 8: Admin Endpoints

Endpoint Method Description Authentication
/admin/games GET List all games Admin
/admin/games POST Add new game Admin
/admin/games/{game_id} GET Get specific game | Admin
/admin/games/{game_id} PUT Update game Admin
/admin/games/{game_id} DELETE Delete game Admin

66

gle

/admin/games/{game_id}/tog | PATCH

Toggle availability

Admin

/admin/games/category/{cat | GET Get games by Admin
egory} category
. Player Endpoints
Table 9: Player Endpoints
Endpoint Method Description Authentication
/player/games GET List playable games Device
/player/games/{game_id} | GET Get specific playable game | Device

67

Data Models

J Game Model
class Game(BaseModel):
id: str
name: str
category: str
description: str
url: HttpUrl
image url: Optional[HttpUrl]

is_playable: bool

. Admin Model

class Admin(BaseModel):
id: str
email: EmailStr

name: str

68

. Device Model

class Device(BaseModel):
id: str
device code: str

is_active: bool

6.5 Cloud Hosting
o Prerequisites

1. Microsoft Account

2. Azure Subscription (Free if Student)

3. Azure DevOps organization and project

4. Git Repos (Can be Created on Azure DevOps Repos) for:

e BusyPad API
e BusyPad APP

e (Games

5. VS Code for Scripting

69

. Instructions
Below is a diagram that shows the cloud hosting setup with Azure DevOps repositories, pipelines,

and Azure Cloud infrastructure

Azure DevOps

I I I

API Pipeline APP Pipeline Game Pipeline

Build & Dockerize Build & Deploy Build & Deploy

Azure Cloud lfra-stru::lure

Azure Container Registry Static Web App (BusyPad APP) Static Web App (Game)

Deploy Docker Image

Azure Container App

Figure 33: Cloud Hosting Diagram

The diagram illustrates a comprehensive CI/CD architecture implemented using Azure DevOps
and Azure Cloud services. The solution consists of three distinct repositories hosted in Azure
DevOps: BusyPad API, BusyPad APP, and Game Repository. Each repository is connected to its

dedicated pipeline that automates the build and deployment processes.

For the web-based applications (BusyPad APP and Game), the respective pipelines build the code
and deploy directly to Azure Static Web Apps, providing an optimized hosting environment for

static content with built-in CI/CD capabilities.

Create Azure Resources

1. Azure Container Registry (for API Docker image)

70

1. Go to Azure Portal — Search for 'Container
2. Click

3. Fillin:

e Registry name (e.g., busypadregistry)
e Resource group
e Location

e SKU (e.g., Basic)

4. Click Review + Create — Create

2. Azure Container App (with Hello World Image)

1. Go to Azure Portal — Search 'Container Apps'
2. Click Create
3. On the Basics tab:
- Subscription: Select your subscription
- Resource Group: Create or select (e.g., busypad-rg)
- Container App name: busypad-api-app
- Region: e.g., East US
4. Under Container App Environment: Create new (e.g., busypad-env)
5. For Container configuration:
- Choose 'Use a quickstart container image from Microsoft'
- Image: mcr.microsoft.com/azuredocs/containerapps-helloworld:latest
- Enable ingress, port 80, public access
6. Click Review + Create — Create

71

Registry'

Create

3. Azure Static Web Apps (BusyPad APP & Game)

Repeat for each app (BusyPad APP and Game):
1. Search for 'Static Web App' — Click Create
2. Fill'in:
- Name: e.g., busypad-app or busypad-game
- Region
- Deployment source: Other (e.g., Azure DevOps)
3. Click Review + Create — Create

Set Up Azure DevOps Pipelines

App and Game Pipeline

trigger:
- main # or your default branch

pool:
vmImage: 'ubuntu-latest’

steps:
- task: NodeTool@eo
inputs:
versionSpec: '18.x"' # Or appropriate version
displayName: 'Install Node.js'

- script: |
npm install
displayName: 'npm install’

- script: |

npm run build
displayName: 'npm build'

72

- task: AzureStaticWebApp@o
inputs:
app_location: ‘'dist’
skip_app_build: true
azure_static_web_apps_api_token: $(AZURE_STATIC_WEB_APP_API_TOKEN)
displayName: 'Deploy to Azure Static Web Apps'

API Pipeline

trigger:
- main # or your main branch name

pool:
vmImage: 'ubuntu-latest’

variables:
dockerRegistryServiceConnection: 'ACRBusyPadConnection'
azureServiceConnection: 'AzureBusyPadConnection'
containerRegistryURL: 'busypadacr.azurecr.io'
imageRepository: 'busypadapi’
tag: '$(Build.BuildId)"’

Azure Container App
containerAppName: 'busypad-api’
resourceGroup: ‘'busypad-rg’
firebaseCredentialsFileName: 'toydb-78e@a-firebase-adminsdk-fbsvc-
47ad7b1510.json'
envFileName: '.env'
stages:
- stage: Build
displayName: Build and push stage
jobs:
- job: Build
displayName: Build
steps:
- task: Bash@3
displayName: 'List Files in Build Context'
inputs:

73

targetType: 'inline'
script: |
echo "Files in build context:"
1s -la $(Build.SourcesDirectory)
Build and push Docker image
- task: Docker@2
displayName: Build and push an image to container registry
inputs:
command: buildAndPush
repository: $(imageRepository)
dockerfile: '$(Build.SourcesDirectory)/Dockerfile’
containerRegistry: $(dockerRegistryServiceConnection)
tags: |
$(tag)
latest
buildContext: $(Build.SourcesDirectory)

- stage: Deploy
displayName: Deploy to Azure Container Apps
dependsOn: Build
jobs:
- job: Deploy
displayName: Deploy
steps:
Deploy to Azure Container Apps
- task: AzureCLI@2
displayName: 'Deploy to Azure Container Apps'
inputs:
azureSubscription: $(azureServiceConnection)
scriptType: 'bash’
scriptLocation: 'inlineScript'
inlineScript: |
Update container app with the image
echo "Updating container app..."
az containerapp update \
--name $(containerAppName) \
--resource-group $(resourceGroup) \
--image $(containerRegistry)/$(imageRepository):$(tag) \
--set-env-vars \

74

"FIREBASE_CREDENTIALS_PATH=/app/$(firebaseCredentialsFileName)" \

"SECRET_KEY=2ed7ca@@af8addfdldodec8e43962c4587ddd7d5d52e36F36aa90b6b74b4424c" \
"ALGORITHM=HS256" \
"ACCESS_TOKEN_EXPIRE_MINUTES=30" \
"DEVICE_TOKEN_EXPIRE_DAYS=30"

Update ingress settings

echo "Updating ingress settings..."

az containerapp ingress update \
--name $(containerAppName) \
--resource-group $(resourceGroup) \
--target-port 8000 \
--type external

API DockerFile

Use Python 3.11 as the base image
FROM python:3.11-slim

Set working directory in the container
WORKDIR /app

Copy requirements file
COPY requirements.txt .

Install dependencies
RUN pip install --no-cache-dir -r requirements.txt

Copy the Firebase credentials file and .env file

Use simple COPY commands without ./ prefix

COPY toydb-78e@a-firebase-adminsdk-fbsvc-47ad7b1510.json /app/
COPY .env /app/

Copy the application code
COoPY . .

Expose the port the app runs on
EXPOSE 8000

Command to run the application

75

CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "8000", "--log-level", "debug"]

This architecture demonstrates modern DevOps practices by separating concerns across different
repositories while maintaining a consistent deployment strategy. The solution leverages Azure's
managed services to minimize operational overhead while providing scalable and reliable hosting
for both static web applications and containerized APIs. The automation pipelines ensure that
code changes are seamlessly built, tested, and deployed to the appropriate environments, enabling

rapid and reliable delivery of features and updates.

6.6 Testing & Validation

. Number of Games

Our initial goal was to compile a strong suite of open-source JavaScript games that run well in the
browser. We successfully identified 10 games on GitHub, including both educational and
entertaining titles. Our target metric was to find at least 10 games, which means we have

successfully met our goal.

° Boot Performance

Measuring boot performance is crucial. We tested how quickly the device boots to the browser

app homepage and analyzed resource usage at boot.

Table 10: Boot Performance

Metric Result
Boot Time 40 seconds
RAM Usage ~160 MB / 512 MB

76

Processor Usage

~9%

Games and Performance

Below is a detailed breakdown of each game, including resource usage and load time.

Educational Games

Table 11: Educational Game Performance

Game

Mathivities
[1]

Spellie [2]

Times Tables
Flashcards [3]

Memory
Game [4]
2048 Game
[4]

Simon Says
Game [4]

Description

A math-based game for children (ages 1-
8) to learn basic operations (addition,
subtraction, multiplication, division).

A Wordle-like game for young spellers.

A flashcard game to help kids learn
multiplication tables.
A card-matching game that enhances

memory and concentration.

A tile-sliding puzzle game to reach 2048.

A memory-based game where players

repeat a color sequence.

Resource
Usage
~150 MB /
512 MB

~200 MB /
512 MB
~120 MB /
512 MB
~120 MB /
512 MB
~110 MB /
512 MB
~110 MB /
512 MB

Processor

Usage

~80%

~20%

~15%

~50%

~15%

~15%

Load

Time

3s

20s

3s

15s

3s

3s

77

https://github.com/canadianveggie/spellie
https://github.com/slyg/times-tables-flashcards
https://github.com/slyg/times-tables-flashcards
https://github.com/crisner/memory-game
https://github.com/crisner/memory-game
https://github.com/he-is-talha/html-css-javascript-games?tab=readme-ov-file
https://github.com/he-is-talha/html-css-javascript-games?tab=readme-ov-file
https://github.com/he-is-talha/html-css-javascript-games?tab=readme-ov-file

° Fun Games

Table 12: Fun Game Performance

Game Description Resource Processor = Load
Usage Usage Time
Flappy Bird [4] A side-scrolling game where players ~130 MB / ~80% 3s
guide a bird through gaps in pipes. 512 MB
Archery Game A precision and timing-based ~120 MB / ~30% 3s
[4] archery challenge. 512 MB
Hextris [5] A fast-paced puzzle game inspired ~120 MB/ ~70% 3s
by Tetris. 512 MB
Lost Treasure A retro-style puzzle-platformer with ~160 MB / ~100% 20s
[6] 7 levels. 512 MB

. APP Performance

Below is the app's performance on the Busypad device.

Table 13: App Performance

Game Resource Processor Load Time
Usage Usage
Login Page ~150 MB / ~10% 3s
512 MB
First Time ~150 MB / ~10% 30s
Login 512 MB
Later Logins ~150 MB / ~10% 1s
512 MB

78

https://github.com/he-is-talha/html-css-javascript-games?tab=readme-ov-file
https://github.com/he-is-talha/html-css-javascript-games?tab=readme-ov-file
https://github.com/Hextris/hextris
https://github.com/js13kGames/lost-treasure

Home Screen ~150 MB / ~10% 2s
512 MB

The first-time login delay is due to the API being hosted on a free instance, causing a cold start

and increased response time on the initial request.

o APP Functionality

This testing was carried out by the development team, simulating typical user interactions to

evaluate the functionality and user experience of the web application.

Below is the testing result of companion web application.

Table 14: App Functionality

Tested Features Test Cases Pass/Fail
Sign up Users register using an email, password, and a Pass
device code. If the email format is incorrect, an
error message “Please enter a valid email” is
displayed. If the password is less than six
characters, a warning message is shown. If the
password confirmation does not match, a
notification prompts the user to correct it.
Registration is successful only when all inputs are
correctly entered.
Admin logs in with If the input is incorrect, the login fails. Pass
email and password If the input is correct, the login is successful, and
the user is redirected to the Home Page.

79

Admin Home Page The page displays games from the Allow Listand Pass
allows filtering by category. Clicking “About”
navigates to the About Page, and clicking Avatar
navigates to the Avatar Page

Parental Control Edit games in the Allow List; only games in the Pass
Allow List are displayed on the Home Page.

Player logs in with If the input is incorrect, the login fails. Pass

device code If the input is correct, the login is successful, and
the user is redirected to the Home Page.

Player Home Page The page displays only games from the Allow List, Pass
allows filtering by category, and ensures that each
game’s information is displayed correctly.

Play Game Each game can be successfully loaded using the Pass
“Play Now” button. Clicking “Back to Games”
returns the user to the game list.

Log Out Clicking “Log Out” successfully logs the user out Pass

and redirects to the Login Page.

The companion web application has only been tested by developers so far and still requires
feedback from real users, so further user testing will be conducted. Additionally, the final version
of the enclosure has not yet been 3D printed, meaning further usability testing for the toy device

(e.g., how comfortable it is to hold) will also be needed.

80

7 Conclusions and Recommendations for Future Work

7.1 Conclusion

The iterative development and testing of the BusyPad 3.0 prototype have yielded critical insights

into its design, functionality, and alignment with user needs. Key achievements include:

Hardware Validation: Successful integration of the Raspberry Pi Zero 2 W with custom
input controls (joystick, buttons, capacitive touchscreen) and stable electrical performance
via the MCP3008 ADC, ensuring minimal signal noise and reliable GPIO operation.
Software Optimization: Implementation of a lightweight OS (Raspberry Pi OS Lite)
reduced boot time to <45 seconds, surpassing initial targets. Automated scripts for network
checks and GP1O-triggered navigation enhanced usability.

Functional Success: The prototype exceeded benchmarks, supporting 15+ open-source
browser-based games (vs. a 10-game target) and demonstrating robust Wi-Fi connectivity
for cloud-based game downloads. Mechanical testing revealed opportunities for ergonomic
refinements in button placement and enclosure design.

Project Management: Structured task allocation via Notion and Gantt charts clarified
dependencies between hardware, software, and mechanical teams. Milestones (e.g., M4:
Hardware & Enclosure Assembly) ensured parallel progress toward final delivery.

By cross-referencing test data with success criteria, the team identified actionable

improvements such as thermal management upgrades and GPIO shielding, all while adhering to

budget constraints. This agile approach ensures the design remains user-centric and scalable for

final implementation.

81

7.2 Recommendations and Future Work

To advance the BusyPad 3.0 toward a market-ready product, the following priorities are

proposed:
1. User Experience (UX) Optimization

e Simplify Setup: Automate Device Code retrieval via the companion app to streamline
registration.

e Custom Ul for Toy Device: Develop custom Ul to improve the user experience on the toy
device screen, making it more intuitive and user-friendly

e Touchscreen Calibration: Refine drivers and conduct usability testing with children aged
6-12 for intuitive interaction.

e Streamline Game Management: Develop a one-click download feature in the web portal,
categorized by educational goals (STEM, literacy).

e Improve Functionality of Virtual Keyboard: Make the on-screen keyboard compatible with

the browser and optimize it further
2. Educational & Engagement Enhancements

e Expand Interactive Content: Partner with open-source developers to add 5-10 STEM-
focused games (e.g., math puzzles, coding challenges).
e Parental Control Features: Integrate playtime limits, content filters, and progress tracking

via the companion app.
3. Technical Improvements

e Cloud Integration: Enable seamless synchronization of game libraries and user profiles

across devices.

82

e Boot Performance: Disable non-essential OS services (e.g., Bluetooth) and explore a
minimalist Linux kernel to reduce boot time to <30 seconds.

e Network Reliability: Implement Ethernet-over-USB failover to maintain connectivity
during Wi-Fi outages.

e Battery Module: Adding a battery module to improve portability and user convenience.
4. Sustainability & Longevity

e Durability Upgrades: Test PETG/recycled PLA filaments for impact resistance and
environmental sustainability.

e Thermal Design: Add ventilation slots to reduce Raspberry Pi thermal throttling during
extended use.

e Modular Components: Design swappable joystick modules to extend device lifespan and

user customization.
5. Documentation & Community Building

e Open-Source Repositories: Publish CAD files, GPIO schematics, and software scripts to
foster third-party contributions.

e User Guides: Create illustrated setup manuals for educators/parents, emphasizing
accessibility for non-technical users.

83

8 Bibliography

[1] Daviddix. (n.d.). Mathivities [GitHub repository]. GitHub. Retrieved March 6, 2025, from
https://github.com/Daviddix/math-game

[2] Canadianveggie. (n.d.). Spellie [GitHub repository]. GitHub. Retrieved March 6, 2025, from

https://github.com/canadianveqqie/spellie

[3] Slyg. (n.d.). Times tables flashcards [GitHub repository]. GitHub. Retrieved March 6, 2025,

from https://github.com/slyg/times-tables-flashcards

[4] Crisner. (n.d.). Memory game [GitHub repository]. GitHub. Retrieved March 6, 2025, from

https://github.com/crisner/memory-game

[5] He-is-talha. (n.d.). 2048 game [GitHub repository]. GitHub. Retrieved March 6, 2025, from

https://github.com/he-is-talha/html-css-javascript-games?tab=readme-ov-file

[6] Hextris. (n.d.). Hextris [GitHub repository]. GitHub. Retrieved March 6, 2025, from

https://github.com/Hextris/hextris

[7] Js13kGames. (n.d.). Lost treasure [GitHub repository]. GitHub. Retrieved March 6, 2025,

from https://github.com/js13kGames/lost-treasure

84

https://github.com/Daviddix/math-game
https://github.com/canadianveggie/spellie
https://github.com/slyg/times-tables-flashcards
https://github.com/crisner/memory-game
https://github.com/he-is-talha/html-css-javascript-games?tab=readme-ov-file
https://github.com/Hextris/hextris
https://github.com/js13kGames/lost-treasure

APPENDICES

9 APPENDIX I: Design Files

All Design files can be found at BudyPad3.0 MakerRepo inisde

BusyPad3.0.zip file

Table 15. Referenced Documents

Folder Name Description
3D Design All 3D Design Files
Backend Backend API Code

Cloud Hosting Pipelines

All Azure DevOps Cloud Hosting Pipelines

Device Config All Raspberry Pi Code and Config
Diagrams Hardware Diagrams
Frontend App Frontend Code

85

https://makerepo.com/MahmoudMo/2532.open-source-educational-toy-busypad-30-open-edventures

