

GNG5140

Design Project User and Product Manual

Open-Sourced Educational Toys – BusyPad 3.0

Submitted by:

Braden Stang, 300426142

Jingxuan Xu, 300450716

Mahmoud Mohammed, 300369733

Youssef Fathi, 300380805

April 3, 2025

University of Ottawa

ii

Table of Contents

Table of Contents .. ii

List of Figures .. vi

List of Tables ... viii

List of Acronyms and Glossary ... ix

1 Introduction ... 1

2 Overview ... 2

2.1 Conventions .. 3

2.2 Cautions & Warnings ... 3

3 Getting started ... 5

3.1 Set-up Considerations .. 5

3.2 User Access Considerations ... 10

3.3 Accessing the System ... 10

3.4 System Organization & Navigation ... 13

3.5 Exiting the System ... 14

4 Using the System .. 15

4.1 Registering an Account .. 15

4.2 Logging into Your Account ... 15

• Parent Account Login ... 16

• Player Account Login ... 16

4.3 Parental Control Function .. 16

iii

4.4 Playing Games .. 17

• Playing a Game .. 17

• Filtering Games by Category ... 19

5 Troubleshooting & Support .. 20

5.1 Error Messages or Behaviors ... 20

5.2 Special Considerations ... 20

5.3 Maintenance ... 20

5.4 Support ... 21

6 Product Documentation .. 22

6.1 Hardware System ... 22

• BOM (Bill of Materials) ... 22

• Equipment list .. 22

• Instructions ... 23

6.2 3D Design ... 38

• Equipment list .. 42

• Instructions ... 42

6.3 Software System ... 45

• Frontend ... 45

• Backend .. 48

System Requirements.. 48

Installation... 48

6.4 Clone the Repository .. 48

iv

• Create Virtual Environment ... 48

• Install Dependencies .. 49

• Firebase Setup .. 49

Running the API ... 50

Development Mode ... 50

Production Mode ... 50

API Usage ... 50

Authentication ... 50

Game Management (Admin) .. 53

Player Access .. 61

Troubleshooting .. 63

• Common Installation Issues ... 63

• Configuration Issues ... 64

• Runtime Issues ... 65

API Reference ... 65

• Authentication Endpoints ... 65

• Admin Endpoints.. 66

• Player Endpoints .. 67

Data Models .. 68

• Game Model ... 68

• Admin Model ... 68

v

• Device Model ... 69

6.5 Cloud Hosting .. 69

• Prerequisites ... 69

• Instructions ... 70

6.6 Testing & Validation .. 76

• Number of Games .. 76

• Boot Performance ... 76

• Games and Performance ... 77

• APP Performance ... 78

• APP Functionality .. 79

7 Conclusions and Recommendations for Future Work .. 81

7.1 Conclusion .. 81

7.2 Recommendations and Future Work .. 82

8 Bibliography ... 84

APPENDICES .. 85

9 APPENDIX I: Design Files .. 85

vi

List of Figures

Figure 1: BusyPad 3.0 Device .. 2

Figure 2: BusyPad 3.0 attached power USB cable ... 5

Figure 3: Opening the WPA_GUI application .. 7

Figure 4: Clicking the 'Scan' button to search for Wi-Fi networks. .. 7

Figure 5: Viewing available networks and signal strength .. 8

Figure 6: Entering the Wi-Fi password (PSK). ... 8

Figure 7: Closing the WPA_GUI window after connection ... 9

Figure 8: BusyPad login screen asking for device code after network connection 9

Figure 9: Parent Login Screen: Enter email and password to access parental controls 12

Figure 10: Parent Registration Screen: Sign up with email, password, and device code 12

Figure 11: Player Page Login: Enter the device code to access child-friendly content 13

Figure 12: Sign-up Page.. 15

Figure 13: Home Page for Parent Account ... 16

Figure 14: Parental Contral Page .. 17

Figure 15: Home Page for Player Account ... 18

Figure 16: Playing Game Page ... 18

Figure 17: Raspberry Pi Zero 2W Pin Out .. 23

Figure 18: Joystick Connection .. 25

Figure 19: Final Prototype Component Layout .. 25

Figure 20: Electrical Decomposition .. 26

vii

Figure 21: Final Prototype Hardware Implementation ... 27

Figure 22: Pi Imager Interface .. 29

Figure 23: Pi Imager Interface .. 29

Figure 24: PuTTY SSH Client Interface ... 30

Figure 25: Rapsberry Pi CLI ... 31

Figure 26: Kiosk Control Panel .. 32

Figure 27: CURA 3D Design Parameters ... 39

Figure 28: BusyPad 3.0 CAD Assembly .. 40

Figure 29: BusyPad 3.0 CAD Assembly Side View... 41

Figure 30: BusyPad 3.0 Orthographic Sketches ... 41

Figure 31: 3D Design Print Settings ... 44

Figure 32: Frontend Structure Overview .. 45

Figure 33: Cloud Hosting Diagram... 70

viii

List of Tables

Table 1. Acronyms ... ix

Table 2: Bill of Materials .. 22

Table 3: Required Components .. 42

Table 4: Common Installation Issues .. 63

Table 5: Configuration Issues ... 64

Table 6: Runtime Issues .. 65

Table 7: Authentication Endpoints ... 65

Table 8: Admin Endpoints .. 66

Table 9: Player Endpoints ... 67

Table 10: Boot Performance ... 76

Table 11: Educational Game Performance ... 77

Table 12: Fun Game Performance .. 78

Table 13: App Performance .. 78

Table 14: App Functionality ... 79

Table 15. Referenced Documents ... 85

ix

List of Acronyms and Glossary

Provide a list of acronyms and associated literal translations used within the document. List the

acronyms in alphabetical order using a tabular format as depicted below.

Table 1. Acronyms

Acronym Definition

UPM User and Product Manual

BOM Bill of Materials

UNSDG United Nations Sustainable Development Goals

PLA Polylactic Acid

COTS Commercial off-the-shelf

USB Universal Serial Bus

GUI Graphical User Interface

IP Internet Protocol

PCB Printed Circuit Board

GPIO General-Purpose Input/Output

ADC Analog-to-Digital Converter

HDMI High-Definition Multimedia Interface

SSH Secure Shell)

URL Uniform Resource Locator

OS Operating System

CAD Computer-aided design

1

1 Introduction
This User and Product Manual (UPM) provides the information necessary for

administrative users to effectively use the BusyPad 3.0 and for prototype documentation.

 This document represents a comprehensive user manual for the BusyPad 3.0. This

document should be used alongside the device to understand and operate the BusyPad effectively.

The report is broken down into many key sections to aid the user in the operation of the device.

First a general overview and explanation of the device is presented along with added context for

understanding the project and the need for such a device to benefit the intended users. In addition,

standard industry conventions, cautions and warnings are included to ensure directions are clear

and all users remain safe while operating the device.

 Next the manual covers startup up and shutdown procedures of the system to ensure

optimal loading times and to minimize the power draw from the external power cord. The

document will explain considerations to take before setting up the device, and any required access

considerations should they be required with the necessary steps to set up the device, access the

application and exiting the system should the user be finished with device operations. The report

will discuss using the system focusing on specific function and subfunctions of both hardware and

all connected components and peripherals, and the frontend and backend software’s. This way

more technical users will understand the operation of the device should troubleshooting be

required.

Next, the manual covers troubleshooting and support. Should any errors occur, the extensive

list of support provided in the document should aid users in effectively finding a solution. The

software is very robust, however due to the nature of open-sourced software there may be

unintended errors that occur. As precautionary measures, we advise in referring to the

documentation should any error occur. If problems continue to persist the contacting Flipped Toys

for further information may be necessary.

Finally, the manual includes all necessary supporting documentation for the BusyPad3.0. This

includes the Bill of Materials, Equipment & Component List, detailed operational instructions,

and all testing and validation information for the device. As the device is open-sourced, it is our

obligation to provide all information to ensure clarity and transparency to all users intended or

otherwise. The hope is to have the next generation learn from the developments made on te

BusyPad 3.0 and take their knowledge of engineering and electronics to take the device to another

level supported by suggestions of the client Flipped Toys.

2

2 Overview

 The client for the project is Demsey Kirkwood of Flipped Toys. Flipped Toys is a startup

based in Ottawa that has the goal of developing educational toys powered by open-sourced

software. The flagship product of the company is the BusyPad, a fun handheld toy that can suit the

needs of many users through variability as its core functionality. The device allows users to switch

between educational and recreational games through an open-sourced platform. The goal of the

product and the team’s contribution to the project is to provide and engaging educational

experience through educational games as a learning medium. This aligns with the UNSDGs of

Quality Education, ensuring everyone has access to quality education and Decent Work and

Economic Growth ensuring that all individuals have the necessary skills to acquire decent jobs.

 Though the BusyPad competes in a competitive market with similar products such as the

Amazon Fire Kids 10, Game Activity Pad, iPad, etc. the product sets itself apart due to its many

key features. Namely the device with its open-sourced capabilities and use of simple COTS

components places it in a price bracket that makes it far more affordable to all families. In

addition, the variability of the device gives it far more interesting and engaging educational games

then competing products. Finally, the device is designed with sustainability in mind, which is an

important factor that new customers often consider when choosing between similar products.

Figure 1: BusyPad 3.0 Device

3

The BusyPad 3.0 prototype solution can be seen in the Figure above. The device is a simple

educational gaming system composed of three key areas: Enclosure, Hardware and Software

(frontend and backend).

Enclosure:

The enclosure is a simple two piece shell made of PLA filament, manufactured using the 3D printers

available at the MakerSpace. The two shells are designed to fit all peripheral components and to

include additional space for running wires and the future inclusion of an internal battery. The design,

as requested by the client is similar in for to a Simon Says, offering its own identity.

Hardware:

The hardware is based around the use of a Raspberry Pi Zero 2W, acting as the information

processor of the device. Connected to the Zero 2W includes many input buttons and an analog

joystick alongside a capacitive 4.3’ touchscreen display. The hardware is further described later in

the report

Software:

The software is robust and includes both the front end and the back end. In brief, the software has

been used to develop the companion app for the device, the optimization and functionality of the

games, and the communication between the two. The exact walkthrough of the software is further

explained in later sections.

2.1 Conventions

The use of the device is straightforward, however a detailed explanation of the set up of the

BusyPad 3.0 and its companion app are discussed in detail in the following section of the report. It

must be stated here that the instructions provided do NOT call to direct action, however they guide

the user through the operation of the device. By following each step carefully there should be no

issues encountered by the users. For context, improvement of the usability of the device was a major

accomplishment of the current iteration over previous models.

2.2 Cautions & Warnings

If applicable, identify any cautions or warnings that the user should know about before using

the system. If waiver use or copy permissions need to be obtained, describe the process.

4

The device is compact and robust, however dropping it may result in serious damage to

internal components, specifically electrical wires that have been soldered together. Users should

take caution when handling the device as they would any other handheld electronic. In addition, the

device is powered externally, as such, users must take caution when dealing with electricity and live

outlets. Though low powered, the current running through the device could result in harm if

improperly plugged into and outlet or capable become loose due to strain on the device. The device

should NOT be used for reasons outside of its intended purposes.

5

3 Getting started

3.1 Set-up Considerations

BusyPad 3.0 is an open-source educational device designed to offer a safe, engaging learning

experience for children. The setup instructions below explain how to prepare and use the device.

1. Equipment and Power

BusyPad 3.0 is not battery operated. It must be connected to a stable power source via the attached

USB cable. To power the system, connect the USB cable to one of the following:

• A standard wall adapter (5V recommended)

• A powered USB port (e.g., on a computer or charging hub)

Note: The device will not operate without being connected to a power source.

 Figure 2: BusyPad 3.0 attached power USB cable

2. Internet Connection

A constant and stable internet connection is required. BusyPad 3.0 uses this connection to:

• Load educational content and updates

• Enable interactive learning features

6

• Sync data and progress

Be sure the device is within range of a working Wi-Fi network.

3. Physical Configuration and Input/Output Devices

BusyPad 3.0 incorporates a user-friendly physical interface that includes:

• Central Touchscreen Display: The main visual output and interactive touch input.

• Color-coded Physical Buttons and Joystick Controls: For navigation and command

selection.

• Built-In Speakers: Provide audio cues and instructional feedback.

• USB Cable Connector: For power and system updates.

4. System Configuration

No additional software installations are required from the user. Once the device is powered and

connected to the internet, it will automatically display the home screen and guide you through the

remaining setup steps.

Connecting to Wi-Fi Using WPA_GUI

WPA_GUI is a graphical interface used to manage Wi-Fi connections on Linux-based systems. It

provides an easy way to scan for available networks, connect to them, and configure wireless

settings without using the command line. This tool is included with BusyPad 3.0 to simplify the

setup process for users.

For more detailed instructions and troubleshooting, you can refer to the official WPA_GUI

documentation at:

https://wiki.archlinux.org/title/Wpa_supplicant

If BusyPad 3.0 is not already connected to a Wi-Fi network when it starts, you will need to use the

built-in Wi-Fi configuration tool called WPA_GUI. Follow the steps below to connect:

1. When the system boots, open the application labeled 'wpa_gui'.

2. In the WPA_GUI window, make sure the correct adapter is selected (usually 'wlan0').

3. Click the 'Scan' button to search for available Wi-Fi networks.

4. A new window will appear showing available networks. Select your preferred network and

click 'Connect'.

https://wiki.archlinux.org/title/Wpa_supplicant

7

5. If prompted, enter the network password (PSK) in the field provided and confirm the

encryption method is set to 'CCMP'. Then click 'OK' or 'Save'.

6. Once connected, the 'Current Status' tab will show 'Completed (station)' and display the IP

address assigned to the BusyPad.

7. You can now close the WPA_GUI window using the top right close button.

 Figure 3: Opening the WPA_GUI application

Figure 4: Clicking the 'Scan' button to search for Wi-Fi networks.

8

Figure 5: Viewing available networks and signal strength

Figure 6: Entering the Wi-Fi password (PSK).

9

Figure 7: Closing the WPA_GUI window after connection

Figure 8: BusyPad login screen asking for device code after network connection

10

3.2 User Access Considerations

BusyPad 3.0 is designed with two primary access points—the Parent Page and the Player Page—

to accommodate different user types and ensure a secure, personalized experience.

1. Parent Page

• Account Creation: Parents or guardians create an account with a username and password

on the Parent Page.

• Device Code: During the account creation process, a device code is generated. This code is

required for accessing the Player Page.

• Parental Controls: Once logged into the Parent Page, parents can manage various settings,

including:

o Enabling or disabling specific games from appearing on the Player Page.

2. Player Page

• Access via Device Code: Child users access the Player Page by entering the device code

provided by the parent.

• Interface for Children: The Player Page is designed specifically for young learners,

displaying age-appropriate games and activities that the parent has enabled.

• Restricted Permissions: Child accounts are limited to educational content only and cannot

modify system settings or access external websites.

3. Administrator (Device Maintainer)

• Device Setup and Maintenance: The administrator (often a parent or guardian) has full

rights to update the system, troubleshoot issues, and manage network settings.

• Authentication: Access to administrative features requires secure authentication, ensuring

that only the designated administrator can make system-wide changes.

This guide ensures that even non-technical users can easily understand the steps to set up BusyPad

3.0, create accounts, and manage the learning environment for children while maintaining safety

and control.

3.3 Accessing the System

To access and begin using the BusyPad 3.0 system, follow the instructions below:

11

1. Power on the device by connecting the USB cable to a wall adapter or USB port.

2. Ensure the device is connected to Wi-Fi. If not already connected, follow the WPA_GUI

instructions provided earlier.

3. BusyPad 3.0 has two primary access points: the Parent Page and the Player Page.

Parent Page Access:

• On the login screen, parents must enter their registered email address and password.

• If a parent does not yet have an account, they can click 'Sign Up' to register. The

registration form requires:

o Email address

o Password and confirmation

o A device code to link the account to the specific BusyPad unit

• After signing up, parents can log in to manage user settings and parental controls.

• If a parent forgets their password, they can use the 'Forgot Password' link on the login

screen to reset it by following the on-screen instructions.

Player Page Access:

• Children access the system using the Player Page by entering the device code provided

during parent setup.

• This will load the child-friendly interface with only the enabled games and content.

• Currently, the virtual keyboard functionality is not fully integrated with the application. As

a workaround, users can press right arrow key followed by the 'X' key to

automatically input a saved device code.

The login and registration process is designed to be quick and secure, ensuring that both children

and parents can safely access their respective features.

12

Figure 9: Parent Login Screen: Enter email and password to access parental controls

Figure 10: Parent Registration Screen: Sign up with email, password, and device code

13

Figure 11: Player Page Login: Enter the device code to access child-friendly content

3.4 System Organization & Navigation

Below is an overview of the system’s main pages and how users navigate between key

features.

1. Parent Home Page (Parent Account)

Parent accounts are directed to the Home page after logging in, where they can view a

list of all available games. Games can be filtered by category (e.g., educational or fun).

While admin users cannot play games directly from this page, they can review all content

available on the platform.

2. Player Home Page (Player Account)

Players are directed to the Player Home after entering a valid device code. This page

displays only the games they are authorized to play. Users can filter games by category

and launch games directly in full-screen mode.

3. User Setting – Parental Control

Admin users have access to this page by clicking the user avatar in home page. In this

page they can control which games are accessible to specific devices or users. Each game

has an on/off toggle switch that allows the admin to enable or disable access as needed.

14

4. About Page

This page provides background information about BusyPad — including its purpose,

how it works, and the benefits it offers to young learners and educators.

5. Log out

Click “Log Out” in the top-right corner of the navigation bar to securely sign out of the

system and return to the login page.

3.5 Exiting the System

To properly exit or shut down the BusyPad 3.0 system, follow these steps:

1. From the main interface, navigate to the logout option and select it to safely sign out of the

current user session.

2. Once you are logged out, disconnect the device from the power source by unplugging the

USB cable from the wall adapter or USB port.

This ensures that the device is safely powered down and ready for future use.

15

4 Using the System

4.1 Registering an Account

Open the BusyPad parent login page and click the Sign-Up link at the bottom to go to the

registration page, which is shown in figure.

Figure 12: Sign-up Page

There are five input fields on the page, which are:

1. Emal Address: Enter a valid email address. This will be used for parent account logging

in. The system will check if the format is correct (e.g., user@example.com).

2. Your Name: Input your display name. This field is required and cannot be left empty.

3. Password: Choose a secure password. It must be at least 6 characters long.

4. Confirm Password: Re-enter your password to make sure it matches. If the two passwords

do not match, an error message will appear.

5. Device Code: The Device Code is the unique identifier of the BusyPad device, used for

player account login on the device.

All five input fields are required. After filling out all required fields, click the Register

button. If there are any issues with your input, the system will display error messages.

4.2 Logging into Your Account

There are two types of login interfaces to support both parents and players. Each type of

account has its own purpose and login flow.

16

• Parent Account Login

To log in with a parental account, you need to enter your Email Address and Password.

Upon successful login, you will be directed to the Parent Account Home Page. The parent account

login page is fully responsive and can be accessed from any device, including mobile phones,

tablets, and desktop computers.

• Player Account Login

The Player Account must be logged in on the toy device. On the login page, users only need

to enter the Device Code. Upon successful login, the system will redirect you to the Player

Homepage.

4.3 Parental Control Function

The Parental Control feature allows parents to add or remove games that the corresponding

player account can access from their home page.

After logging in, the Parent Account will be directed to the page shown in the figure. In the

top-right corner, the user’s avatar is displayed. Clicking on the avatar will take the user to the

Parental Control page, as shown in the next figure.

Figure 13: Home Page for Parent Account

17

On the Parental Control page, all games from the game library are listed. Each game has a

toggle switch next to it. By turning the switch on or off and clicking the Save Changes button, the

parent can control whether the game is accessible or restricted on the player’s home page.

Figure 14: Parental Contral Page

4.4 Playing Games

After logging in on the toy device, the Player Account will be directed to the Player

Homepage. This page displays only the games that the Parent Account has allowed access to

through the Parental Control settings.

• Playing a Game

After logging in, the Player user is directed to the homepage, as shown in the figure. On this

page, each game is displayed as a card containing the game image, title, and description. Below

each game card, there is a “PLAY NOW” button.

18

Figure 15: Home Page for Player Account

Clicking the “PLAY NOW” button will take the user to the corresponding game page, as

shown in the next figure. The player can use buttons, a joystick, or the touch screen on the toy

device to play games.

Figure 16: Playing Game Page

Click “Back to Games” on the game page to go back to the Player’s game list.

19

• Filtering Games by Category

On the Player Homepage, there is a filter dropdown located at the top-right corner of the

screen. The filter includes three options: All, Educational, and Fun.

By selecting one of these options, the player can view games that belong to the

corresponding category.

20

5 Troubleshooting & Support

5.1 Error Messages or Behaviors

• If the device fails to connect to Wi-Fi or the on-screen virtual keyboard does not appear

when needed, the recommended first step is to restart the system.

• Inconsistent behavior in loading the Player or Parent login screens may be due to poor or

lost internet connection.

• If games fail to load or buttons do not respond, ensure that the internet connection is active

and the USB power cable is securely connected.

• If the screen remains black after powering on, check the power source and ensure the USB

cable is not damaged.

5.2 Special Considerations

Currently, the virtual keyboard functionality is not fully integrated with the application. As a

workaround, users can press any arrow key followed by the 'X' key to automatically input a saved

device code.

All BusyPad applications and content are hosted on the internet. A reliable and continuous

internet connection is essential for accessing games, logging in, and syncing progress. If the

system is offline, key features will not be available.

5.3 Maintenance

• Ensure the device is stored in a dry, dust-free environment.

• Clean the screen and buttons gently with a soft, dry cloth.

• Periodically check for firmware or application updates (if update notifications are

enabled).

• Verify the USB cable and buttons are functioning properly; replace any damaged hardware

as needed.

21

5.4 Support

If you experience an issue that cannot be resolved through a system restart or checking hardware

connections, you may request assistance.

Please contact Mr. Mahmoud Mohamed at mmoha409@uottawa.ca

When requesting support:

• Describe the issue clearly

• Include a picture of the problem, if possible

• Mention any error messages or behaviors you observed

This will help the support team provide you with the fastest and most effective assistance.

mailto:mmoha409@uottawa.ca
mailto:mmoha409@uottawa.ca

22

6 Product Documentation

6.1 Hardware System

• BOM (Bill of Materials)
Table 2: Bill of Materials

• Equipment list

1. Soldering Station

2. Wire Cutters

3. Hot Glue Gun

4. Electrical Tape

23

5. Heat shrink Tubing

6. SSH Client (PuTTY)

• Instructions

Figure 17: Raspberry Pi Zero 2W Pin Out

The system’s hardware components are arranged in a structured manner to ensure efficient

signal flow, proper grounding, and readability. From the previous prototype to the current

iteration, hardware and electrical connections remian unchanged. This is due to the chosen

components working effectively to meet our requirements. For future iterations a custom built

PCB and internal power system would be the likely next steps. In addition, design for the

implementation of additional input methods or sensors may be considered. This will increase the

24

longevity of the device and the diversity of available games. The primary components and their

connections include:

• External Input Power (5V, 2A) → Supplies power to Raspberry Pi Zero 2 W.

• Raspberry Pi Zero 2 W → Manages GPIO connections and overall processing.

• 4.3 in. Capacitive Touchscreen

• Mini HDMI to HDMI Adapter → Connects Raspberry Pi to the capacitive touchscreen

display.

Control Inputs

• Joystick:

o X-axis → ADC → GPIO (e.g., GPIO17)

o Y-axis → ADC → GPIO (e.g., GPIO27)

• Buttons:

o Button 1 → GPIO (e.g., GPIO5)

o Button 2 → GPIO (e.g., GPIO6)

o Button 3 → GPIO (e.g., GPIO7)

o Button 4 → GPIO (e.g., GPIO8)

o Button 5 → GPIO (e.g., GPIO9)

o Button 6 → GPIO (e.g., GPIO10)

o Button 7 → GPIO (e.g., GPIO11)

o Button 8 → GPIO (e.g., GPIO12)

25

Figure 18: Joystick Connection

Figure 19: Final Prototype Component Layout

26

Dedicated ground connections for ADC, buttons, and joystick to ensure stable operation

and minimize electrical noise. The layout is further detailed in the accompanying flow diagram for

all the major electrical connections:

Figure 20: Electrical Decomposition

27

Figure 21: Final Prototype Hardware Implementation

\The Raspberry Pi Zero 2 W is equipped with multiple input controls, including 8 buttons, a

joystick, and touchscreen to facilitate user interaction. Each button is directly connected to the

Raspberry Pi’s General-Purpose Input/Output (GPIO) pins and configured as keyboard inputs

through the Pi’s settings. One of these buttons executes a script that enables backward navigation

in a web browser. Each button features a pull-down resistor configuration, ensuring proper signal

readings and avoiding floating GPIO states. The wiring structure includes:

• One end of each button is wired to a dedicated GPIO pin.

• The other end is connected to the ground to complete the circuit.

To maintain system stability and ensure reliable performance, the following considerations

have been implemented:

• Proper Grounding: Ensures signal integrity and prevents floating states in GPIO

connections.

28

• Pull-down Resistors: Used on buttons to avoid unintended signal activation.

• Voltage Compatibility: Ensures ADC voltage levels are compatible with the Raspberry

Pi’s operating range.

• Signal Noise Reduction: Shielded cables are recommended for analog signal connections

to minimize interference.

This structured configuration and detailed layout provide a well-organized and professional

approach to designing an interactive Raspberry Pi-based control system.

Setting Up the Raspberry Pi Zero 2W for Kiosk Mode:

Step 1: Install Raspberry Pi OS Lite (Legacy 32-bit Bullseye)

1. Download Raspberry Pi OS Lite (Legacy 32-bit Bullseye) from the official Raspberry Pi

website.

2. Use Raspberry Pi Imager to flash the OS onto an SD card.

3. Before writing the image, configure the following settings in Raspberry Pi Imager:

a. Set a username and password for SSH access.

b. Enable SSH from Services

c. Enter Wi-Fi credentials (SSID and password) to enable network access after

installation.

29

Figure 22: Pi Imager Interface

Figure 23: Pi Imager Interface

30

4. Download PuTTY SSH client

a. Check the router page to identify Raspberry Pi IP and Make sure you remember the IP

b. Put Raspberry Pi IP in the Hostname field and press open

Figure 24: PuTTY SSH Client Interface

31

Figure 25: Rapsberry Pi CLI

Step 2: Install Pi-Kiosk

1. Clone the Pi-Kiosk GitHub repository and install the kiosk application:

sudo apt install git -y

git clone https://github.com/DanTappan/Pi-Kiosk

cd Pi-Kiosk

./install.sh [--browser browser]

2. The Pi-Kiosk installer automatically configures Openbox, a lightweight window

manager, instead of a full desktop environment to minimize resource usage.

3. During installation, you can choose to install Midori, a lightweight browser capable of

running JavaScript applications.

4. At the end of the installation, set a password to access the kiosk control panel.

https://github.com/DanTappan/Pi-Kiosk

32

5. Access the kiosk control panel at the Rasspberry Pi’s IP on your local network to set the

URL of the app

Figure 26: Kiosk Control Panel

Step 3: Configure Automatic Browser Launch and Network Check on Boot

Using the Openbox autostart File

• The /etc/xdg/openbox/autostart file is responsible for running startup scripts when the

Openbox window manager starts. This allows us to:

• Disable screen blanking and power management to keep the screen active.

• Run the network-check script to detect internet connectivity and prompt the user with Wi-

Fi settings if needed.

• Launch the browser in fullscreen mode upon startup.

• Enable a physical back button for navigation.

Editing the Autostart File:

1. Open the autostart file in a text editor:

sudo nano /etc/xdg/openbox/autostart

33

2. Modify the file to include the following:

Disable any form of screen saver / screen blanking / power management
xset s off
xset s noblank

xset -dpms

Allow quitting the X server with CTRL-ALT-Backspace
setxkbmap -option terminate:ctrl_alt_bksp

Change directory to the user's home folder
cd /home/edu

Start the virtual keyboard in the background
onboard &
Run the network check script to detect Wi-Fi status
./network-check.sh &
Enable the physical back button functionality
./midori_back2.py &
Set up port forwarding from port 80 to 8000 for the kiosk control page
sudo iptables -t nat -I PREROUTING -p tcp --dport 80 -j REDIRECT --to-ports 8000
Start the kiosk browser application in an infinite loop to restart it if it crashes
while true; do
 # Launch the kiosk script
 ./kiosk.py
done

3. Save the file (CTRL + X, then Y, then Enter).

Step 4: Automate Wi-Fi Setup if No Internet is Detected

Network Check Script (network-check.sh)

This script continuously checks for an internet connection and launches the Wi-Fi

configuration tool (wpa_gui) if no network is available.

1. Open the script file for editing:

sudo nano /home/edu/network-check.sh

2. Add the following script:

#!/bin/bash
while true; do
 # Check if Google is reachable
 if ping -c1 google.com >/dev/null 2>&1; then
 # Kill wpa_gui and onboard if internet is available
 pkill wpa_gui

 pkill onboard
 exit 0
 else
 # Start wpa_gui if not already running

34

 if ! pgrep -x "wpa_gui" >/dev/null; then
 wpa_gui &
 fi
 fi
 # Wait 5 seconds before retrying
 sleep 5
done

3. Save the file and make it executable:

chmod +x /home/edu/network-check.sh

This ensures that the Wi-Fi setup tool will launch only if the Raspberry Pi does not have internet

access.

Step 5: Configure GPIO Buttons as Keyboard Inputs

To allow physical buttons to function as keyboard keys, modify the /boot/config.txt file.

1. Open the file for editing:

sudo nano /boot/config.txt

2. Add the following lines to configure GPIO pins as keyboard inputs:

Setup Arrow Keys
dtoverlay=gpio-key,gpio=12,active_low=1,gpio_pull=up,keycode=105 # Left Arrow
dtoverlay=gpio-key,gpio=1,active_low=1,gpio_pull=up,keycode=108 # Down Arrow
dtoverlay=gpio-key,gpio=25,active_low=1,gpio_pull=up,keycode=103 # Up Arrow
dtoverlay=gpio-key,gpio=24,active_low=1,gpio_pull=up,keycode=106 # Right Arrow
Setup Control Keys
dtoverlay=gpio-key,gpio=23,active_low=1,gpio_pull=up,keycode=57 # Spacebar
dtoverlay=gpio-key,gpio=18,active_low=1,gpio_pull=up,keycode=45 # X Key
dtoverlay=gpio-key,gpio=15,active_low=1,gpio_pull=up,keycode=63 # F5 Key

3. Save the file and reboot the Raspberry Pi:

sudo reboot

Step 6: Enable a Physical Back Button for Navigation

The back button script (midori_back2.py) allows a physical button connected to GPIO 14 to

act as a "Back" button in the browser.

1. Open the script file for editing:

35

sudo nano /home/edu/goBack/midori_back2.py

2. Add the following Python code:

#!/usr/bin/env python3
from gpiozero import Button
import os

button = Button(14, pull_up=True)
def go_back():
 # Send Alt+Left to navigate back
 os.system('midori -e tab-next')
 os.system('midori -e tab-previous')
 os.system('midori -e go-back')
button.when_pressed = go_back

while True:
 button.wait_for_press()

3. Save the file and make it executable:

chmod +x /home/edu/goBack/ midori_back2.py

This script listens for a button press and sends a "Back" command to the Midori browser.

Step 7: Setting Up a Joystick

1. Enable SPI for Joystick Support

a. Open the Raspberry Pi configuration tool:

sudo raspi-config

b. Navigate to Interface Options → SPI and enable SPI.

2. Install Required Python Libraries

a. Install Python and the spidev library to communicate with the joystick via SPI:

sudo apt install python3 python3-pip -y

pip install spidev

3. Create and Run the Joystick Script

a. Open a new script file:

sudo nano /home/edu/joystick/arrow-joystick.py

b. Add the following code:

#!/usr/bin/python
import spidev

import os

import time

36

import subprocess
SPI setup
spi = spidev.SpiDev()
spi.open(0, 0)
spi.max_speed_hz = 1000000
Define Axis Channels
swt_channel = 0
vrx_channel = 1
vry_channel = 2
Time delay for reading values
delay = 0.1
Joystick thresholds
threshold_high = 700
threshold_low = 300
Function for reading the MCP3008 channel
def readChannel(channel):
 val = spi.xfer2([1, (8+channel) << 4, 0])
 data = ((val[1] & 3) << 8) + val[2]
 return data
Track current state
current_keys = set()
Endless loop
while True:
 # Determine position
 vrx_pos = readChannel(vrx_channel)
 vry_pos = readChannel(vry_channel)
 swt_val = readChannel(swt_channel)

 # Determine which keys should be pressed
 keys_to_press = set()

 # X-axis (left/right)
 if vrx_pos > threshold_high:
 keys_to_press.add("Right")
 elif vrx_pos < threshold_low:
 keys_to_press.add("Left")

 # Y-axis (up/down)
 if vry_pos > threshold_high:
 keys_to_press.add("Down")
 elif vry_pos < threshold_low:
 keys_to_press.add("Up")

 # Release keys that are no longer being pressed
 for key in current_keys - keys_to_press:
 subprocess.run(["xdotool", "keyup", key])

 # Press keys that aren't already pressed
 for key in keys_to_press - current_keys:

37

 subprocess.run(["xdotool", "keydown", key])

 # Update current keys
 current_keys = keys_to_press

 # Output for debugging
 print("VRx: {} VRy: {} SW: {} Keys: {}".format(
 vrx_pos, vry_pos, swt_val, list(current_keys)
))

 # Wait
 time.sleep(delay)

 swt_val = readChannel(swt_channel)

 # Determine which keys should be pressed
 keys_to_press = set()

 # X-axis (left/right)
 if vrx_pos > threshold_high:
 keys_to_press.add("Right")
 elif vrx_pos < threshold_low:
 keys_to_press.add("Left")

 # Y-axis (up/down)
 if vry_pos > threshold_high:
 keys_to_press.add("Down")
 elif vry_pos < threshold_low:
 keys_to_press.add("Up")

 # Release keys that are no longer being pressed
 for key in current_keys - keys_to_press:
 subprocess.run(["xdotool", "keyup", key])

 # Press keys that aren't already pressed
 for key in keys_to_press - current_keys:
 subprocess.run(["xdotool", "keydown", key])

 # Update current keys
 current_keys = keys_to_press

 # Output for debugging
 print("VRx: {} VRy: {} SW: {} Keys: {}".format(
 vrx_pos, vry_pos, swt_val, list(current_keys)
))

 # Wait
 time.sleep(delay)

38

c. Save and make it executable:

chmod +x /home/edu/joystick/arrow-joystick.py

d. Run the script:

sudo python3 /home/edu/joystick/joystick.py

e. Add this line to /etc/xdg/openbox/autostart

cd /home/edu/joystick

sudo ./arrow-joystick.py

6.2 3D Design

The physical housing of the BusyPad 3.0 prototype is a two-piece solid shell made of PLA

filament with layer height set to 0.4mm to ensure acceptable precision in the produced piece. The

set parameters and rendering of the component for 3D printing in the CURA software can be seen

in the following figure:

39

Figure 27: CURA 3D Design Parameters

It is suggested in future iterations to use alternative manufacturing processes or the use of

different filaments to provide greater detail (especially with the incorporation of rounded fillets)

and to promote sustainability. For example, resin molding may be the optimal solution as it will

allow production of multiple batches of BusyPad enclosures at one time. It must be noted that the

client would have been satisfied with an enclosure made of light wood through laser cutting,

however as mentioned the rapid prototyping was necessary for ensuring all tolerances were met.

The top shell is a thin curved piece with a height of 10 mm and depth of 8mm. It includes

extruded cuts to allow for opening and attachment of the eight buttons, swappable joystick, and

capacitive touchscreen display. The previous version had 4 auxiliary buttons underneath the screen

and d-pad installation location. Changes were made to have the 4 buttons on the left side perform

the d-pad function (up/down, left/right) to simplify the design. Removal of 2 buttons on the right

side was done to limit unnecessary components. Another change was to increase the overall size of

40

the prototype, changing the diameter from 180mm to 200mm. This necessary change gives more

space in the enclosure to fit all necessary electronics and cables.

The bottom plate is a thicker shell at 40mm height and 35mm depth. It incorporates an offset

ridge to allow attachment between the two sections with a thickness set to 1.5mm. A raised shelf is

built into the base with 4 circular pegs to support the screen (or in the future, incorporation of a flat

lithium-ion battery). A drilled cutout of ½” was added for the external power cable. This iteration

incorporates a through hole to fit the cable dimensions. The CAD assembly of the BusyPad 3.0 is

on the next figure:

Figure 28: BusyPad 3.0 CAD Assembly

The initial prototype attempted to use PLA screws to attach both shells, however this did

not work so a simple resting design that makes use of gravity to secure both components will be

used for the updated prototype. This way the top shell can be easily removed for troubleshooting

the electrical components or mechanical input methods.

41

Figure 29: BusyPad 3.0 CAD Assembly Side View

Included is additional schematic containing the orthographic sketches of the final prototype.

This way we can get a better understanding of the internal and external layout at different angles.

Figure 30: BusyPad 3.0 Orthographic Sketches

42

• Equipment list

Included is the detailed list of all components required to manufacture the 3D enclosure for

the current working BusyPad 3.0 prototype:

Table 3: Required Components

• Instructions

For the purposes of 3D printing in the MakerSpace it is required that all student must have

completed the basic 3D printing workshop to gain access. A list of available workshops and dates

Item # Component Name Quantity

1
Ultimaker 2+ (0.8
nozzle diameter) 1

2

Basic 3D Printing
Training Certificate

CEED 1

3
CURA 5.8.1 (or later

versions) 1

4
PLA filament (color of

choice) 1

5
SD Card to USB

adapter 1
6 SD Card 1
7 Top Shell 1

8 Bottom Shell 1
9 Joystick 1

10 Buttons 8

43

can be found on the MakeRepo home page or at https://simpli.events/u/uottawaceed. Once training

is completed students are given full access to the available printers.

The next step is to download and set up the desired slicer software. For the Ultimaker 2+

the software CURA is all that is required to do the slicing and it can be found at

https://ultimaker.com/software/ultimaker-cura/ for free to all users. With the software downloaded

and started, all that is required is to upload any STL files from your desktop or removable drive so

that you may begin slicing and creating the g-code needed for the printer to create the 3D model.

CAD software’s such as SolidWorks and AutoCAD can save 3D models directly as STL files.

When 3D printing it is also important to understand the various print settings, or adjustments

the user can make to ensure both a fast and efficient print. This report will not go into depth on the

selections the user can make as it is expected that you will learn such things during the workshops.

Included however, in the figure below, is the layout of the customizability options the user can

make.

https://simpli.events/u/uottawaceed
https://ultimaker.com/software/ultimaker-cura/

44

Figure 31: 3D Design Print Settings

Once the g-code has been created, it is time for printing. The process is simply saving the

g-code to an SD card and taking said SD card to the assigned printer. Each printer has limited

45

menus that the user can navigate through, however all that is required for your purposes is to

select your desired file, wait for the printer to warm up, and finally begin printing your model.

6.3 Software System

The software system follows a frontend-backend separation pattern. The following sections

provide separate overviews of the frontend and backend.

• Frontend

The frontend of BusyPad software system is built with React.js using a component-based

architecture. It handles page navigation with react-router-dom. The frontend structure overview

shows in figure:

Figure 32: Frontend Structure Overview

The main frontend stacks used in the project includes:

• Vite

• React

• React Router DOM

• React Bootstrap

46

• Axios

Components

All reusable UI elements are in the /src/components/ directory. Key components

include Navbar, which provides navigation and user controls for parent account;

PlayerNavbar ia a simplified version for player account; GameCard is for displaying game

details with play (for patent account) and lock status (for player account); and Aurora, a

custom animated background component built with WebGL (ogl) for visual enhancement

on login and registration pages. New UI components should also be placed in this directory

to maintain project structure and consistency.

Pages

The /src/pages/ directory contains all the page level components. Key pages include Login

and DeviceLogin, which handle user authentication for parent and player account

respectively; Home and PlayerHome, which serve as dashboards for viewing and interacting

with games; Register, where new users can create accounts and link a device code;

UserManagement, which allows admin users to control game access through toggles; and

About, which briefly introduces the BusyPad platform. Each page typically uses reusable

components and handles its own data fetching and state logic. All route definitions for these

pages can be found in App.jsx.

App.jsx

The App.jsx file serves as the main entry point of the frontend application. It sets up all

routes using react-router-dom, initializes the user session from localStorage, and protects

restricted pages through a custom ProtectedRoute wrapper. To add a new page or update

route access, changes should be made in this file.

47

Services/app.js

Handles all frontend API requests, including user login, registration, game data fetching,

and token storage.

Set-up Instructions

GitHub Link: Code of Frontend

1. Clone the repository

2. Install all dependencies

npm install

3. Start the development server

npm run dev

4. Access the web application: Open browser and go to http://localhost:5173

Suggestions for Future Development

• Improve error handling in login and register pages

• Increase font sizes and page layout of UI for toy device screens

• Enhance the About page by adding more product-related information and details about

BusyPad’s purpose and features

• Add functionality to allow users to change their password

https://github.com/Joyceeee-dot/busy_pad
http://localhost:5173/

48

• Backend

This part provides comprehensive instructions for setting up, configuring, and using the Game

Management API backend. The backend is built with FastAPI and Firebase, providing secure

endpoints for game management and player access.

 System Requirements

Before proceeding with installation, ensure your system meets the following requirements:

• Python 3.9 or higher

• Pip (Python package manager)

• Git

• Internet connection for accessing Firebase services

• Firebase account with Firestore database

Installation

6.4 Clone the Repository

git clone https://github.com/InterVam/GAMEAPI.git

cd GAMEAPI

• Create Virtual Environment

Windows:

python -m venv venv

venv\Scripts\activate

macOS/Linux:

https://github.com/InterVam/GAMEAPI.git
https://github.com/InterVam/GAMEAPI.git

49

python -m venv venv

source venv/bin/activate

• Install Dependencies

pip install -r requirements.txt

Configuration

• Firebase Setup

1. Create a Firebase project at firebase.google.com

2. Set up Firestore database in your project

3. Generate Firebase Admin SDK credentials:

4. Navigate to Project Settings > Service Accounts

5. Click "Generate New Private Key"

6. Save the JSON file securely

7. Environment Variables

Create a .env file in the project root with the following variables:

SECRET_KEY=your_jwt_secret_key

FIREBASE_CREDENTIALS_BASE64=your_base64_encoded_firebase_credentials

To encode your Firebase credentials:

Windows (PowerShell):

[Convert]::ToBase64String([System.Text.Encoding]::UTF8.GetBytes((Get-

Content -Raw path\to\firebase-credentials.json)))

https://firebase.google.com/

50

macOS/Linux:

base64 -w 0 path/to/firebase-credentials.json

Running the API

 Development Mode

uvicorn app.main:app --reload

Production Mode

uvicorn app.main:app --host 0.0.0.0 --port 8000

The API will be available at:

• http://localhost:8000

• Interactive documentation: http://localhost:8000/docs

API Usage

Authentication

• Admin Signup

Endpoint: POST /auth/signup

Request Body:

{

 "email": "admin@example.com",

http://localhost:8000/
http://localhost:8000/docs
mailto:admin@example.com

51

 "password": "securepassword",

 "name": "Admin User"

}

Response:

{

 "id": "user_id",

 "email": "admin@example.com",

 "name": "Admin User"

}

• Admin Login

Endpoint: POST /auth/token

Request Body:

{

 "email": "admin@example.com",

 "password": "securepassword"

mailto:admin@example.com
mailto:admin@example.com

52

Response:

{

 "access_token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...",

 "token_type": "bearer"

}

• Device Authentication

Endpoint: POST /auth/device

Request Body:

{

 "device_code": "DEVICE123"

}

Response:

{

 "access_token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...",

 "token_type": "bearer"

}

53

Game Management (Admin)

• Add New Game

Endpoint: POST /admin/games

Headers:

Authorization: Bearer YOUR_ADMIN_TOKEN

Request Body:

{

 "name": "Math Adventure",

 "category": "Educational",

 "description": "Learn math through fun puzzles",

 "url": "https://example.com/games/math",

 "image_url": "https://example.com/images/math.jpg",

 "is_playable": true

}

https://example.com/games/math
https://example.com/images/math.jpg

54

Response:

{

 "id": "game_id",

 "name": "Math Adventure",

 "category": "Educational",

 "description": "Learn math through fun puzzles",

 "url": "https://example.com/games/math",

 "image_url": "https://example.com/images/math.jpg",

 "is_playable": true

}

• Get All Games

Endpoint: GET /admin/games

Headers:

Authorization: Bearer YOUR_ADMIN_TOKEN

https://example.com/games/math
https://example.com/images/math.jpg

55

Response:

[

 {

 "id": "game_id_1",

 "name": "Math Adventure",

 "category": "Educational",

 "description": "Learn math through fun puzzles",

 "url": "https://example.com/games/math",

 "image_url": "https://example.com/images/math.jpg",

 "is_playable": true

 },

 {

 "id": "game_id_2",

 "name": "Science Quest",

 "category": "Educational",

 "description": "Explore science concepts",

 "url": "https://example.com/games/science",

 "image_url": "https://example.com/images/science.jpg",

 "is_playable": false

https://example.com/games/math
https://example.com/images/math.jpg
https://example.com/games/science
https://example.com/images/science.jpg

56

 }

]

• Get Game by ID

Endpoint: GET /admin/games/{game_id}

Headers:

Authorization: Bearer YOUR_ADMIN_TOKEN

Response:

{

 "id": "game_id",

 "name": "Math Adventure",

 "category": "Educational",

 "description": "Learn math through fun puzzles",

 "url": "https://example.com/games/math",

 "image_url": "https://example.com/images/math.jpg",

 "is_playable": true

}

https://example.com/games/math
https://example.com/images/math.jpg

57

• Update Game

Endpoint: PUT /admin/games/{game_id}

Headers:

Authorization: Bearer YOUR_ADMIN_TOKEN

Request Body:

{

 "name": "Math Adventure 2.0",

 "category": "Educational",

 "description": "Updated math puzzles",

 "url": "https://example.com/games/math2",

 "image_url": "https://example.com/images/math2.jpg",

 "is_playable": true

}

Response:

{

 "id": "game_id",

https://example.com/games/math2
https://example.com/images/math2.jpg

58

 "name": "Math Adventure 2.0",

 "category": "Educational",

 "description": "Updated math puzzles",

 "url": "https://example.com/games/math2",

 "image_url": "https://example.com/images/math2.jpg",

 "is_playable": true

}

• Toggle Game Availability

Endpoint: PATCH /admin/games/{game_id}/toggle

Headers:

Authorization: Bearer YOUR_ADMIN_TOKEN

Response:

{

 "id": "game_id",

 "name": "Math Adventure",

https://example.com/games/math2
https://example.com/images/math2.jpg

59

 "category": "Educational",

 "description": "Learn math through fun puzzles",

 "url": "https://example.com/games/math",

 "image_url": "https://example.com/images/math.jpg",

 "is_playable": false

}

• Delete Game

Endpoint: DELETE /admin/games/{game_id}

Headers:

Authorization: Bearer YOUR_ADMIN_TOKEN

Response:

{

 "message": "Game deleted successfully"

}

https://example.com/games/math
https://example.com/images/math.jpg

60

• Get Games by Category

Endpoint: GET /admin/games/category/{category}

Headers:

Authorization: Bearer YOUR_ADMIN_TOKEN

Response:

[

 {

 "id": "game_id_1",

 "name": "Math Adventure",

 "category": "Educational",

 "description": "Learn math through fun puzzles",

 "url": "https://example.com/games/math",

 "image_url": "https://example.com/images/math.jpg",

 "is_playable": true

 },

 {

 "id": "game_id_2",

 "name": "Science Quest",

https://example.com/games/math
https://example.com/images/math.jpg

61

 "category": "Educational",

 "description": "Explore science concepts",

 "url": "https://example.com/games/science",

 "image_url": "https://example.com/images/science.jpg",

 "is_playable": false

 }

]

Player Access

• Get Playable Games

Endpoint: GET /player/games

Headers:

Authorization: Bearer YOUR_DEVICE_TOKEN

Response:

https://example.com/games/science
https://example.com/images/science.jpg

62

[

 {

 "id": "game_id_1",

 "name": "Math Adventure",

 "category": "Educational",

 "description": "Learn math through fun puzzles",

 "url": "https://example.com/games/math",

 "image_url": "https://example.com/images/math.jpg",

 "is_playable": true

 }

]

• Get Specific Playable Game

Endpoint: GET /player/games/{game_id}

Headers:

Authorization: Bearer YOUR_DEVICE_TOKEN

Response:

https://example.com/games/math
https://example.com/images/math.jpg

63

{

 "id": "game_id",

 "name": "Math Adventure",

 "category": "Educational",

 "description": "Learn math through fun puzzles",

 "url": "https://example.com/games/math",

 "image_url": "https://example.com/images/math.jpg",

 "is_playable": true

}

Troubleshooting

• Common Installation Issues

Table 4: Common Installation Issues

Issue Solution

"ModuleNotFoundError: No module named

'fastapi'"

Run pip install fastapi

https://example.com/games/math
https://example.com/images/math.jpg

64

"ModuleNotFoundError: No module named

'uvicorn'"

Run pip install uvicorn

"No such file or directory: 'requirements.txt'" Ensure you're in the correct directory

• Configuration Issues

Table 5: Configuration Issues

Issue Solution

"Firebase credentials invalid" Verify your base64-encoded credentials are correct

"Secret key must be provided" Check that your .env file contains SECRET_KEY

"Permission denied" Ensure Firebase service account has appropriate

permissions

65

• Runtime Issues

Table 6: Runtime Issues

Issue Solution

"Address already in use" Change port with --port 8001

"Could not validate credentials" Ensure you're using the correct token

"JWT token has expired" Request a new authentication token

 API Reference

• Authentication Endpoints

Table 7: Authentication Endpoints

Endpoint Method Description Authentication

/auth/signup POST Create admin account None

66

/auth/token POST Get admin JWT token None

/auth/device POST Register device None

• Admin Endpoints

Table 8: Admin Endpoints

Endpoint Method Description Authentication

/admin/games GET List all games Admin

/admin/games POST Add new game Admin

/admin/games/{game_id} GET Get specific game Admin

/admin/games/{game_id} PUT Update game Admin

/admin/games/{game_id} DELETE Delete game Admin

67

/admin/games/{game_id}/tog

gle

PATCH Toggle availability Admin

/admin/games/category/{cat

egory}

GET Get games by

category

Admin

• Player Endpoints

Table 9: Player Endpoints

Endpoint Method Description Authentication

/player/games GET List playable games Device

/player/games/{game_id} GET Get specific playable game Device

68

Data Models

• Game Model

class Game(BaseModel):

 id: str

 name: str

 category: str

 description: str

 url: HttpUrl

 image_url: Optional[HttpUrl]

 is_playable: bool

• Admin Model

class Admin(BaseModel):

 id: str

 email: EmailStr

 name: str

69

• Device Model

class Device(BaseModel):

 id: str

 device_code: str

 is_active: bool

6.5 Cloud Hosting

• Prerequisites

1. Microsoft Account

2. Azure Subscription (Free if Student)

3. Azure DevOps organization and project

4. Git Repos (Can be Created on Azure DevOps Repos) for:

• BusyPad API

• BusyPad APP

• Games

5. VS Code for Scripting

70

• Instructions

Below is a diagram that shows the cloud hosting setup with Azure DevOps repositories, pipelines,

and Azure Cloud infrastructure

Figure 33: Cloud Hosting Diagram

The diagram illustrates a comprehensive CI/CD architecture implemented using Azure DevOps

and Azure Cloud services. The solution consists of three distinct repositories hosted in Azure

DevOps: BusyPad API, BusyPad APP, and Game Repository. Each repository is connected to its

dedicated pipeline that automates the build and deployment processes.

For the web-based applications (BusyPad APP and Game), the respective pipelines build the code

and deploy directly to Azure Static Web Apps, providing an optimized hosting environment for

static content with built-in CI/CD capabilities.

Create Azure Resources

1. Azure Container Registry (for API Docker image)

71

1. Go to Azure Portal → Search for 'Container Registry'

 2. Click Create

 3. Fill in:

• Registry name (e.g., busypadregistry)

• Resource group

• Location

• SKU (e.g., Basic)

 4. Click Review + Create → Create

2. Azure Container App (with Hello World Image)

1. Go to Azure Portal → Search 'Container Apps'

 2. Click Create

 3. On the Basics tab:

 - Subscription: Select your subscription

 - Resource Group: Create or select (e.g., busypad-rg)

 - Container App name: busypad-api-app

 - Region: e.g., East US

 4. Under Container App Environment: Create new (e.g., busypad-env)

 5. For Container configuration:

 - Choose 'Use a quickstart container image from Microsoft'

 - Image: mcr.microsoft.com/azuredocs/containerapps-helloworld:latest

 - Enable ingress, port 80, public access

 6. Click Review + Create → Create

72

3. Azure Static Web Apps (BusyPad APP & Game)

Repeat for each app (BusyPad APP and Game):

 1. Search for 'Static Web App' → Click Create

 2. Fill in:

 - Name: e.g., busypad-app or busypad-game

 - Region

 - Deployment source: Other (e.g., Azure DevOps)

 3. Click Review + Create → Create

Set Up Azure DevOps Pipelines

App and Game Pipeline

 trigger:

 - main # or your default branch

pool:

 vmImage: 'ubuntu-latest'

steps:

- task: NodeTool@0

 inputs:

 versionSpec: '18.x' # Or appropriate version

 displayName: 'Install Node.js'

- script: |

 npm install

 displayName: 'npm install'

- script: |

 npm run build

 displayName: 'npm build'

73

- task: AzureStaticWebApp@0

 inputs:

 app_location: 'dist'

 skip_app_build: true

 azure_static_web_apps_api_token: $(AZURE_STATIC_WEB_APP_API_TOKEN)

 displayName: 'Deploy to Azure Static Web Apps'

API Pipeline

trigger:

- main # or your main branch name

pool:

 vmImage: 'ubuntu-latest'

variables:

 dockerRegistryServiceConnection: 'ACRBusyPadConnection'

 azureServiceConnection: 'AzureBusyPadConnection'

 containerRegistryURL: 'busypadacr.azurecr.io'

 imageRepository: 'busypadapi'

 tag: '$(Build.BuildId)'

 # Azure Container App

 containerAppName: 'busypad-api'

 resourceGroup: 'busypad-rg'

 firebaseCredentialsFileName: 'toydb-78e0a-firebase-adminsdk-fbsvc-

47ad7b1510.json'

 envFileName: '.env'

stages:

- stage: Build

 displayName: Build and push stage

 jobs:

 - job: Build

 displayName: Build

 steps:

 - task: Bash@3

 displayName: 'List Files in Build Context'

 inputs:

74

 targetType: 'inline'

 script: |

 echo "Files in build context:"

 ls -la $(Build.SourcesDirectory)

 # Build and push Docker image

 - task: Docker@2

 displayName: Build and push an image to container registry

 inputs:

 command: buildAndPush

 repository: $(imageRepository)

 dockerfile: '$(Build.SourcesDirectory)/Dockerfile'

 containerRegistry: $(dockerRegistryServiceConnection)

 tags: |

 $(tag)

 latest

 buildContext: $(Build.SourcesDirectory)

- stage: Deploy

 displayName: Deploy to Azure Container Apps

 dependsOn: Build

 jobs:

 - job: Deploy

 displayName: Deploy

 steps:

 # Deploy to Azure Container Apps

 - task: AzureCLI@2

 displayName: 'Deploy to Azure Container Apps'

 inputs:

 azureSubscription: $(azureServiceConnection)

 scriptType: 'bash'

 scriptLocation: 'inlineScript'

 inlineScript: |

 # Update container app with the image

 echo "Updating container app..."

 az containerapp update \

 --name $(containerAppName) \

 --resource-group $(resourceGroup) \

 --image $(containerRegistry)/$(imageRepository):$(tag) \

 --set-env-vars \

75

 "FIREBASE_CREDENTIALS_PATH=/app/$(firebaseCredentialsFileName)" \

"SECRET_KEY=2ed7ca00af8addfd1d04ec8e43962c4587ddd7d5d52e36f36aa90b6b74b4424c" \

 "ALGORITHM=HS256" \

 "ACCESS_TOKEN_EXPIRE_MINUTES=30" \

 "DEVICE_TOKEN_EXPIRE_DAYS=30"

 # Update ingress settings

 echo "Updating ingress settings..."

 az containerapp ingress update \

 --name $(containerAppName) \

 --resource-group $(resourceGroup) \

 --target-port 8000 \

 --type external

API DockerFile

Use Python 3.11 as the base image
FROM python:3.11-slim

Set working directory in the container
WORKDIR /app

Copy requirements file
COPY requirements.txt .

Install dependencies
RUN pip install --no-cache-dir -r requirements.txt

Copy the Firebase credentials file and .env file
Use simple COPY commands without ./ prefix
COPY toydb-78e0a-firebase-adminsdk-fbsvc-47ad7b1510.json /app/
COPY .env /app/

Copy the application code
COPY . .

Expose the port the app runs on
EXPOSE 8000

Command to run the application

76

CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "8000", "--log-level", "debug"]

This architecture demonstrates modern DevOps practices by separating concerns across different

repositories while maintaining a consistent deployment strategy. The solution leverages Azure's

managed services to minimize operational overhead while providing scalable and reliable hosting

for both static web applications and containerized APIs. The automation pipelines ensure that

code changes are seamlessly built, tested, and deployed to the appropriate environments, enabling

rapid and reliable delivery of features and updates.

6.6 Testing & Validation

• Number of Games

Our initial goal was to compile a strong suite of open-source JavaScript games that run well in the

browser. We successfully identified 10 games on GitHub, including both educational and

entertaining titles. Our target metric was to find at least 10 games, which means we have

successfully met our goal.

• Boot Performance

Measuring boot performance is crucial. We tested how quickly the device boots to the browser

app homepage and analyzed resource usage at boot.

Table 10: Boot Performance

Metric Result

Boot Time 40 seconds

RAM Usage ~160 MB / 512 MB

77

Processor Usage ~9%

• Games and Performance

Below is a detailed breakdown of each game, including resource usage and load time.

• Educational Games

Table 11: Educational Game Performance

Game Description Resource

Usage

Processor

Usage

Load

Time

Mathivities

[1]

A math-based game for children (ages 1-

8) to learn basic operations (addition,

subtraction, multiplication, division).

~150 MB /

512 MB

~80% 3s

Spellie [2] A Wordle-like game for young spellers. ~200 MB /

512 MB

~20% 20s

Times Tables

Flashcards [3]

A flashcard game to help kids learn

multiplication tables.

~120 MB /

512 MB

~15% 3s

Memory

Game [4]

A card-matching game that enhances

memory and concentration.

~120 MB /

512 MB

~50% 15s

2048 Game

[4]

A tile-sliding puzzle game to reach 2048. ~110 MB /

512 MB

~15% 3s

Simon Says

Game [4]

A memory-based game where players

repeat a color sequence.

~110 MB /

512 MB

~15% 3s

https://github.com/canadianveggie/spellie
https://github.com/slyg/times-tables-flashcards
https://github.com/slyg/times-tables-flashcards
https://github.com/crisner/memory-game
https://github.com/crisner/memory-game
https://github.com/he-is-talha/html-css-javascript-games?tab=readme-ov-file
https://github.com/he-is-talha/html-css-javascript-games?tab=readme-ov-file
https://github.com/he-is-talha/html-css-javascript-games?tab=readme-ov-file

78

• Fun Games

Table 12: Fun Game Performance

Game Description Resource

Usage

Processor

Usage

Load

Time

Flappy Bird [4] A side-scrolling game where players

guide a bird through gaps in pipes.

~130 MB /

512 MB

~80% 3s

Archery Game

[4]

A precision and timing-based

archery challenge.

~120 MB /

512 MB

~30% 3s

Hextris [5] A fast-paced puzzle game inspired

by Tetris.

~120 MB /

512 MB

~70% 3s

Lost Treasure

[6]

A retro-style puzzle-platformer with

7 levels.

~160 MB /

512 MB

~100% 20s

• APP Performance

Below is the app's performance on the Busypad device.

Table 13: App Performance

Game Resource

Usage

Processor

Usage

Load Time

Login Page ~150 MB /

512 MB

~10% 3s

First Time

Login

~150 MB /

512 MB

~10%

30s

Later Logins

~150 MB /

512 MB

~10%

1s

https://github.com/he-is-talha/html-css-javascript-games?tab=readme-ov-file
https://github.com/he-is-talha/html-css-javascript-games?tab=readme-ov-file
https://github.com/Hextris/hextris
https://github.com/js13kGames/lost-treasure

79

Home Screen

~150 MB /

512 MB

~10%

2s

The first-time login delay is due to the API being hosted on a free instance, causing a cold start

and increased response time on the initial request.

• APP Functionality

This testing was carried out by the development team, simulating typical user interactions to

evaluate the functionality and user experience of the web application.

Below is the testing result of companion web application.

Table 14: App Functionality

Tested Features Test Cases Pass/Fail

Sign up Users register using an email, password, and a

device code. If the email format is incorrect, an

error message “Please enter a valid email” is

displayed. If the password is less than six

characters, a warning message is shown. If the

password confirmation does not match, a

notification prompts the user to correct it.

Registration is successful only when all inputs are

correctly entered.

Pass

Admin logs in with

email and password

If the input is incorrect, the login fails.

If the input is correct, the login is successful, and

the user is redirected to the Home Page.

Pass

80

Admin Home Page The page displays games from the Allow List and

allows filtering by category. Clicking “About”

navigates to the About Page, and clicking Avatar

navigates to the Avatar Page

Pass

Parental Control Edit games in the Allow List; only games in the

Allow List are displayed on the Home Page.

Pass

Player logs in with

device code

If the input is incorrect, the login fails.

If the input is correct, the login is successful, and

the user is redirected to the Home Page.

Pass

Player Home Page The page displays only games from the Allow List,

allows filtering by category, and ensures that each

game’s information is displayed correctly.

Pass

Play Game Each game can be successfully loaded using the

“Play Now” button. Clicking “Back to Games”

returns the user to the game list.

Pass

Log Out Clicking “Log Out” successfully logs the user out

and redirects to the Login Page.

Pass

The companion web application has only been tested by developers so far and still requires

feedback from real users, so further user testing will be conducted. Additionally, the final version

of the enclosure has not yet been 3D printed, meaning further usability testing for the toy device

(e.g., how comfortable it is to hold) will also be needed.

81

7 Conclusions and Recommendations for Future Work

7.1 Conclusion

The iterative development and testing of the BusyPad 3.0 prototype have yielded critical insights

into its design, functionality, and alignment with user needs. Key achievements include:

• Hardware Validation: Successful integration of the Raspberry Pi Zero 2 W with custom

input controls (joystick, buttons, capacitive touchscreen) and stable electrical performance

via the MCP3008 ADC, ensuring minimal signal noise and reliable GPIO operation.

• Software Optimization: Implementation of a lightweight OS (Raspberry Pi OS Lite)

reduced boot time to <45 seconds, surpassing initial targets. Automated scripts for network

checks and GPIO-triggered navigation enhanced usability.

• Functional Success: The prototype exceeded benchmarks, supporting 15+ open-source

browser-based games (vs. a 10-game target) and demonstrating robust Wi-Fi connectivity

for cloud-based game downloads. Mechanical testing revealed opportunities for ergonomic

refinements in button placement and enclosure design.

• Project Management: Structured task allocation via Notion and Gantt charts clarified

dependencies between hardware, software, and mechanical teams. Milestones (e.g., M4:

Hardware & Enclosure Assembly) ensured parallel progress toward final delivery.

By cross-referencing test data with success criteria, the team identified actionable

improvements such as thermal management upgrades and GPIO shielding, all while adhering to

budget constraints. This agile approach ensures the design remains user-centric and scalable for

final implementation.

82

7.2 Recommendations and Future Work

To advance the BusyPad 3.0 toward a market-ready product, the following priorities are

proposed:

1. User Experience (UX) Optimization

• Simplify Setup: Automate Device Code retrieval via the companion app to streamline

registration.

• Custom UI for Toy Device: Develop custom UI to improve the user experience on the toy

device screen, making it more intuitive and user-friendly

• Touchscreen Calibration: Refine drivers and conduct usability testing with children aged

6–12 for intuitive interaction.

• Streamline Game Management: Develop a one-click download feature in the web portal,

categorized by educational goals (STEM, literacy).

• Improve Functionality of Virtual Keyboard: Make the on-screen keyboard compatible with

the browser and optimize it further

2. Educational & Engagement Enhancements

• Expand Interactive Content: Partner with open-source developers to add 5–10 STEM-

focused games (e.g., math puzzles, coding challenges).

• Parental Control Features: Integrate playtime limits, content filters, and progress tracking

via the companion app.

3. Technical Improvements

• Cloud Integration: Enable seamless synchronization of game libraries and user profiles

across devices.

83

• Boot Performance: Disable non-essential OS services (e.g., Bluetooth) and explore a

minimalist Linux kernel to reduce boot time to <30 seconds.

• Network Reliability: Implement Ethernet-over-USB failover to maintain connectivity

during Wi-Fi outages.

• Battery Module: Adding a battery module to improve portability and user convenience.

4. Sustainability & Longevity

• Durability Upgrades: Test PETG/recycled PLA filaments for impact resistance and

environmental sustainability.

• Thermal Design: Add ventilation slots to reduce Raspberry Pi thermal throttling during

extended use.

• Modular Components: Design swappable joystick modules to extend device lifespan and

user customization.

5. Documentation & Community Building

• Open-Source Repositories: Publish CAD files, GPIO schematics, and software scripts to

foster third-party contributions.

• User Guides: Create illustrated setup manuals for educators/parents, emphasizing

accessibility for non-technical users.

84

8 Bibliography

[1] Daviddix. (n.d.). Mathivities [GitHub repository]. GitHub. Retrieved March 6, 2025, from

https://github.com/Daviddix/math-game

[2] Canadianveggie. (n.d.). Spellie [GitHub repository]. GitHub. Retrieved March 6, 2025, from

https://github.com/canadianveggie/spellie

[3] Slyg. (n.d.). Times tables flashcards [GitHub repository]. GitHub. Retrieved March 6, 2025,

from https://github.com/slyg/times-tables-flashcards

[4] Crisner. (n.d.). Memory game [GitHub repository]. GitHub. Retrieved March 6, 2025, from

https://github.com/crisner/memory-game

[5] He-is-talha. (n.d.). 2048 game [GitHub repository]. GitHub. Retrieved March 6, 2025, from

https://github.com/he-is-talha/html-css-javascript-games?tab=readme-ov-file

[6] Hextris. (n.d.). Hextris [GitHub repository]. GitHub. Retrieved March 6, 2025, from

https://github.com/Hextris/hextris

[7] Js13kGames. (n.d.). Lost treasure [GitHub repository]. GitHub. Retrieved March 6, 2025,

from https://github.com/js13kGames/lost-treasure

https://github.com/Daviddix/math-game
https://github.com/canadianveggie/spellie
https://github.com/slyg/times-tables-flashcards
https://github.com/crisner/memory-game
https://github.com/he-is-talha/html-css-javascript-games?tab=readme-ov-file
https://github.com/Hextris/hextris
https://github.com/js13kGames/lost-treasure

85

APPENDICES

9 APPENDIX I: Design Files

All Design files can be found at BudyPad3.0 MakerRepo inisde

BusyPad3.0.zip file

Table 15. Referenced Documents

Folder Name Description

3D Design All 3D Design Files

Backend Backend API Code

Cloud Hosting Pipelines All Azure DevOps Cloud Hosting Pipelines

Device Config All Raspberry Pi Code and Config

Diagrams Hardware Diagrams

Frontend App Frontend Code

https://makerepo.com/MahmoudMo/2532.open-source-educational-toy-busypad-30-open-edventures

