

GNG<1103/2101>

Design Project User and Product Manual

Submitted by:

Zonify Group 16.

Dennis Baik, 300404910

Tariq Mustapha, 300421081

Taryn McDermid, 300410820

Rachael Neff, 300425179

William Gillespie, 300444324

11/28/24

University of Ottawa

List of Figures
List of Figures ... 2

List of Tables .. 3

1Introduction .. 3

2Overview .. 3

2.2Cautions & Warnings ... 6

3Getting started .. 7

3.1Configuration Considerations .. 7

3.2User Access Considerations .. 8

3.3Accessing/setting up the System .. 9

3.4Exiting the System ... 9

4Using the System .. 9

4.1Log In Menu .. 10

4.2Create a Restricted zone .. 10

4.3Controlling Bandwidth ... 11

5Troubleshooting & Support... 11

5.1Error Messages and Behaviours .. 12

5.2Maintenance ... 12

5.3Support .. 13

6Product Documentation .. 13

6.2Testing & Validation ... 24

7Conclusions and Recommendations for Future Work .. 26

8Bibliography .. 26

APPENDICES .. 31

9APPENDIX I: Design Files .. 31

List of Tables
Table 1. Glossary

Bandwidth The amount of information that can be sent through the network

API A connection between applications to send and receive requested
 information

UI User Interface

1 Introduction
This User and Product Manual (UPM) provides the information necessary for Developers
and users to effectively use Zonify and for prototype documentation. It will highlight any
warnings, usage, troubleshooting and product documentation.

2 Overview
The company Shabodi required a network aware, modular code that will alert administration and
the user of the device that they are approaching a restricted zone. It used at least 2 API’s and is
capable of demonstration in their sandbox.

Pictures of Prototype:

The location code shown above demonstrates the code in how it checks the current device
location and sends alerts when required.

The UI above shows an example of the map shown to users, the red being the zone of
restriction.

The above bandwidth code, when prompted by the location code creates limits on the
device bandwidth.

The block diagram shows the logical steps the program will take to check and limit the
bandwidth depending on the location.

2.2 Cautions & Warnings

Network Connectivity: Requires a stable internet connection to function properly. Ensure
that you have a reliable Wi-Fi or mobile data connection to avoid interruptions in service

Shabodi VPN Connection: A VPN connection to shabodi is required to access their API’s.

Compatibility: Ensure that your device meets the minimum system requirements for the
app.

Waiver Use or Copy Permissions:

Permissions from Shabodi API services are required to access the API responses.

3 Getting started
The majority of our software and code was created using generative AI, this allowed our
team to create the best possible product using our limited coding experience. As of right
now our system is split up into three different coding sequences, the code for the location
API, the code for the bandwidth API, and the code for the app software. Below there is a
detailed walk through of each of these programs.

Location API Code:

The location API code uses 3 different pips and a google geolocation API was used in place
of Shabodi, due to issues with their Location API services. The API software was then
integrated into a zone restriction code not only to monitor where a person was but also to
alert someone when they were in a restricted zone. This code utilized a single longitude
and latitude point along with the radius of a circle in order to create a restricted zone.

Bandwidth API Code:

Once prompted by the location code, the bandwidth code will begin to limit the device that
has been identified to have entered the restricted zone. Once the device has left the
restricted zone the code will stop restricting the bandwidth.

Application Code:

The application primarily utilizes buttons and text boxes for user interaction, which can be
easily implemented using a basic graphical user interface (GUI) in Python by leveraging
libraries such as Tkinter or PyQt.

3.1 Configuration Considerations

For software prototypes: Briefly describe and graphically depict as appropriate the
communications and configuration of the system in a way that a non-technical user can
understand. Include the type of input and output devices/databases needed.

Input:

- Need device (smartphone, tablets computers)
- access to 5g network
- Stores user-provided information

Output

- Contain information that is displayed to users
- Need device (smartphone, tablets computers)

3.2 User Access Considerations

Describe the different users and/or user groups that could be using the prototype, and the
restrictions placed on accessibility or use for each.

User:

• Accessibility: Little to no control over the application itself. When using the app the
only things that they can see is their location in context to a restricted zone and they
will receive notifications when they are approaching and in a restricted zone.

• Restrictions: A user will only see the restricted zones that apply to them and will not
be able to see the location of others.

Administrators:

• Accessibility: Will have control over whether or not the bandwidth throttling code
runs when a person is in a restricted zone. They will also be able to set and change
restricted zones. Additionally, the administrator and any other employee that is set
to receive notifications (such as security personnel) will receive a notification any
time a person enters a restricted zone who is not supposed to be there.

• Restrictions: Administrators will not be able to see where their employees are at all
times, they will only be able to see when they are in a restricted zone.

3.3 Accessing/setting up the System

Location Prototype:

To access this code, you will need a link to the IDX platform on which this code was
written. After accessing this you may need to regenerate the google geolocation API key
and insert that into the corresponding spot within the code. If this doesn’t work then copy
the code and copy it into IDX. Then

Bandwidth Prototype:

To access this code, you will need to have access to Shabodi’s VPN and be able to
generate a key. Once you are able to do this copy the code into visual studios code and run
the code in administrator mode.

Application Prototype:

To access this export, it into visual studio codes.

3.4 Exiting the System

To exit the system, simply terminate the program at the current IDE.

4 Using the System
Using the system as a whole is intuitive and simple. Administrators can create a restricted
zone, control bandwidth of devices inside the restricted zone, and track location of devices
in relation to the restricted zone. Devices with user access have limited functionality and
can only access a map that tracks their device, and the precise location of the restricted
zone set by the administrator.

The following sub-sections provide detailed, step-by-step instructions on how to use the
various functions of the application.

4.1 Log In Menu

To log in to the application, a certain code should be provided to the device that will allow
the device to run the application. Each code is unique to the device and certain codes
allow devices access to administrator functionality where they can create restricted zones
and toggle bandwidth.

4.2 Create a Restricted zone

To enter a restricted zone, the administrator must enter the precise longitude (x – axis) and
latitude (y – axis) coordinates and the radius of the circle that will surround the
coordinates. The area in this circle will be entered into the system and any unauthorized
devices in this area will be alerted.

4.3 Controlling Bandwidth

Administrators can choose to choke the bandwidth of unauthorized devices when they
enter the restricted zone by going into the settings page and turning the bandwidth button
OFF.

The other option is to limit the bandwidth by only allowing essential functions of the device
to continue, such as emergency calls and location pinging. To do this, the bandwidth
toggle must be switched to ON.

 This feature allows the application to be useful in different sit

5 Troubleshooting & Support

VPN Connection Error: The VPN will disconnect from this application every 3 hours and
needs to be reconnected to, to allow application to run with shabodis API’s.

Shabodi API Connection Error: Shabodi’s API’s may be down or unable to connect to. The
connection error can indicate your token generation credentials. Please contact Shabodi
developer.support@shabodi.com for further information.

Application Running Errors: Depending on what application you are running, it may be
incompatible with the software Tkinter. In such cases, either run the application on a
different hardware or software environment to successfully run the code.

5.1 Error Messages and Behaviours

5.1.1 VPN Connection Error

You may encounter an error indicating that the connection to the API has failed, or the
application will stop working because the VPN is disconnected.

5.1.2 Shabodi API Connection Error

The application may show a message indicating that the API token cannot be verified, or
there might be a failure to establish a connection to the API.

5.1.3 Application Running Error

The application may fail to launch or may show an error code.

5.2 Maintenance

If the current ID and secret key to access Shabodi’s API are no longer up to date and token
generation is unavailable, please contact Shabodi developer.support@shabodi.com to
update your credentials.

mailto:developer.support@shabodi.com
mailto:developer.support@shabodi.com

5.3 Support

If Shabodi’s API or VPN is unavailable or being worked on. Contact Shabodis at
developer.support@shabodi.com. For further support email customer-
support@shabodi.com or call +1- 289-800-5990.

6 Product Documentation
The final prototype was made with 3 separate parts, the location service code, the

bandwidth restriction code and the user interface code. While it was not possible to
integrate all three parts of the code into one product, with adequate time investment it
would be possible to result in a single complete product.

For the location service code, a public API named Trimble was initially used as proof
of concept and later integrated into Google API as the Shabodi location API was not
functional. Multiple iterations with Claude AI were done with the prompts being:

1. I need you to create a code that uses a location API. This code will be used to create

restricted zones, when a restricted zone is created the code needs to be able to alert a user

not only when they are approaching a restricted zone but also when they are in one. There

should be two different sounds and vibrations for those notifications. We should also be

able to change and customize a restricted zone

2. complete this code in python.
3. can you add in a pinging section, where it will ping your location the closer you are to the

restricted zone and it will ping it less the further you are away from the restricted zone

4. write it using this API key 47C4ECCCB1EF134EB784BDB1660FD90B

5. It is for trimble maps and this is a publically available API
6. can you fill in some random info in the blank parts so that I can test the code
7. can you take the code you have already given me but take out the pygame and the

notification portion because that has been causing me issues\

8. Now can you add a notification system that will notify a person when they are approaching

and when they are in a restricted zone, can you try not to use pygame because i couldn't get

that to work on my computer

9. in line 53 i am getting an invalid syntax error

10. it says no module names modify two
11. can you replace all of the places with tremble mentioned with a place to input our own api

information

12. the api i am going to use is a location api so I do not have a different api maps key

mailto:customer-support@shabodi.com
mailto:customer-support@shabodi.com

13. Can you change this code so that it is set up to utilize googles geolocation api:
14. where do I incert googles api key
15. can you highlight where that is in my code
16. i dont see that in my code can you add it
17. idx says that no googlemaps module found
18. how can i connect my idx code with my google cloud account so i can use the api
19. will this allow me to use the google api in my idx code
20. i am getting this error API Error: REQUEST_DENIED (This API project is not

authorized to use this API.)
21. i am not able to select my idx project though i can not find it
22. can you ensure that the test section of my code does no need the use of a speed api
23. Yes

The code created with these prompts is as follows:
import math
import time
from dataclasses import dataclass
from typing import Dict, Optional, List
from threading import Thread
import googlemaps
from dotenv import load_dotenv
import os

Load environment variables
load_dotenv()

Initialize Google Maps client
API_KEY = os.getenv('GOOGLE_MAPS_API_KEY')

@dataclass
class Point:
lat: float
lng: float

class GoogleMapsAPI:
def __init__(self, api_key: str):
self.client = googlemaps.Client(key="AIzaSyA2gvK4YCW3g7TLilSOPwVtxAPzpqOKcFM")

def reverse_geocode(self, point: Point) -> dict:
"""Get location information from coordinates."""
try:
result = self.client.reverse_geocode((point.lat, point.lng))

if result:
address = result[0]
return {
"address": {
"freeformAddress": address['formatted_address'],
"country": next((c['long_name'] for c in address['address_components']
if 'country' in c['types']), ''),
"countryCode": next((c['short_name'] for c in address['address_components']
if 'country' in c['types']), '')
}
}
return self._get_dummy_data(point)
except Exception as e:
print(f"API Error: {e}")
return self._get_dummy_data(point)

def get_route(self, start: Point, end: Point) -> dict:
"""Get routing information between two points."""
try:
directions = self.client.directions(
origin=(start.lat, start.lng),
destination=(end.lat, end.lng),
mode="driving"
)
if directions:
route = directions[0]
path = self._decode_polyline(route['overview_polyline']['points'])
return {
"geometry": {
"type": "LineString",
"coordinates": [[p[1], p[0]] for p in path]
},
"summary": {
"distance": route['legs'][0]['distance']['value'],
"time": route['legs'][0]['duration']['value']
}
}
return self._get_dummy_route(start, end)
except Exception as e:
print(f"API Error: {e}")
return self._get_dummy_route(start, end)

def _decode_polyline(self, polyline: str) -> List[tuple]:
"""Decode Google's polyline format."""
points = []
index = lat = lng = 0

while index < len(polyline):
result = 1
shift = 0
while True:
b = ord(polyline[index]) - 63 - 1
index += 1
result += b << shift
shift += 5
if b < 0x1f:
break
lat += (~result >> 1) if (result & 1) else (result >> 1)

result = 1
shift = 0
while True:
b = ord(polyline[index]) - 63 - 1
index += 1
result += b << shift
shift += 5
if b < 0x1f:
break
lng += (~result >> 1) if (result & 1) else (result >> 1)

points.append([lat * 1e-5, lng * 1e-5])

return points

def _get_dummy_data(self, point: Point) -> dict:
"""Return dummy data for testing."""
return {
"address": {
"freeformAddress": "123 Test Street, Test City",
"country": "United States",
"countryCode": "US"
}
}

def _get_dummy_route(self, start: Point, end: Point) -> dict:
"""Return dummy route data for testing."""
return {
"geometry": {
"type": "LineString",
"coordinates": [

[start.lng, start.lat],
[start.lng + 0.001, start.lat + 0.001],
[end.lng, end.lat]
]
},
"summary": {
"distance": 1000,
"time": 300
}
}

class RestrictedZone:
def __init__(self, zone_id: str, center: Point, radius: float, name: str = ''):
self.id = zone_id
self.center = center
self.radius = radius # in meters
self.name = name
Define distance thresholds for ping frequency (in meters)
self.distance_thresholds = {
100: 5, # Within 100m: ping every 5 seconds
250: 60, # Within 250m: ping every 60 seconds
500: 600, # Within 500m: ping every 10 minutes
1000: 900, # Within 1km: ping every 15 minutes
2000: 1800, # Within 2km: ping every 30 minutes
float('inf'): 1800 # Beyond 2km: ping every 30 minutes
}
Store zone metadata
self.location_info = None

def update_location_info(self, google_api: GoogleMapsAPI):
"""Update zone location information using Google Maps API."""
try:
location_data = google_api.reverse_geocode(self.center)
self.location_info = location_data
except Exception as e:
print(f"Error updating location info: {e}")

def is_inside(self, point: Point) -> bool:
return self.get_distance(point) <= self.radius

def is_approaching(self, point: Point) -> bool:
distance = self.get_distance(point)
return self.radius < distance <= (self.radius + 100)

def get_distance(self, point: Point) -> float:

R = 6371e3 # Earth's radius in meters
φ1 = math.radians(self.center.lat)
φ2 = math.radians(point.lat)
Δφ = math.radians(point.lat - self.center.lat)
Δλ = math.radians(point.lng - self.center.lng)

a = (math.sin(Δφ/2) * math.sin(Δφ/2) +
math.cos(φ1) * math.cos(φ2) *
math.sin(Δλ/2) * math.sin(Δλ/2))
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))

return R * c

def get_ping_interval(self, distance: float) -> float:
for threshold, interval in sorted(self.distance_thresholds.items()):
if distance <= threshold:
return interval
return self.distance_thresholds[float('inf')]

class GeofencingSystem:
def __init__(self, api_key: str):
self.google_api = GoogleMapsAPI(api_key)
self.zones: Dict[str, RestrictedZone] = {}
self.watching = False
self.last_alerts = {}
self.last_pings = {}
self.alert_cooldown = 30
self.current_position = None

def add_zone(self, center: Point, radius: float, name: str = '') -> str:
"""Add a new restricted zone."""
zone_id = str(time.time())
zone = RestrictedZone(zone_id, center, radius, name)
Get location information
zone.update_location_info(self.google_api)
self.zones[zone_id] = zone
self.last_pings[zone_id] = 0
return zone_id

def get_current_location(self) -> Optional[Point]:
"""Get current location."""
return self.current_position

def simulate_movement(self, points: List[Point]):

"""Simulate movement along a path of points."""
if not points or len(points) < 2:
return

for i in range(len(points) - 1):
try:
route = self.google_api.get_route(points[i], points[i + 1])
if 'geometry' in route:
for coord in route['geometry']['coordinates']:
self.current_position = Point(lat=coord[1], lng=coord[0])
self._check_zones(self.current_position)
time.sleep(1)
except Exception as e:
print(f"Error simulating movement: {e}")

def _check_zones(self, current_point: Point):
"""Check all zones against current position and handle pinging."""
current_time = time.time()
for zone in self.zones.values():
distance = zone.get_distance(current_point)
ping_interval = zone.get_ping_interval(distance)
last_ping = self.last_pings.get(zone.id, 0)
last_alert = self.last_alerts.get(zone.id, 0)

if current_time - last_ping >= ping_interval:
self._ping_location(zone, distance)
self.last_pings[zone.id] = current_time

if current_time - last_alert > self.alert_cooldown:
if zone.is_inside(current_point):
self._alert_inside_zone(zone)
self.last_alerts[zone.id] = current_time
elif zone.is_approaching(current_point):
self._alert_approaching_zone(zone)
self.last_alerts[zone.id] = current_time

def _ping_location(self, zone: RestrictedZone, distance: float):
"""Console output for location pings."""
if self.current_position:
try:
location_info = self.google_api.reverse_geocode(self.current_position)
location_str = location_info.get('address', {}).get('freeformAddress', 'Unknown location')
print(f"\n[PING] {zone.name}")
print(f"Distance: {distance:.1f}m")
print(f"Location: {location_str}")

print("-" * 50)
except Exception as e:
print(f"\n[PING] {zone.name} - Distance: {distance:.1f}m")

def _alert_inside_zone(self, zone: RestrictedZone):
"""Console output for inside zone alerts."""
print(f"\n🚨 ALERT: Inside Restricted Zone!")
print(f"Zone: {zone.name}")
print(f"Action Required: Please exit the restricted area immediately")
print("=" * 50)

def _alert_approaching_zone(self, zone: RestrictedZone):
"""Console output for approaching zone alerts."""
print(f"\n⚠️ WARNING: Approaching Restricted Zone!")
print(f"Zone: {zone.name}")
print(f"Action Required: Please be cautious of restricted area ahead")
print("=" * 50)

def start_watching(self):
"""Start monitoring location."""
if not self.watching:
self.watching = True
self.monitor_thread = Thread(target=self._location_monitor)
self.monitor_thread.daemon = True
self.monitor_thread.start()

def stop_watching(self):
"""Stop monitoring location."""
self.watching = False
if hasattr(self, 'monitor_thread'):
self.monitor_thread.join()

def _location_monitor(self):
"""Monitor location in a separate thread."""
while self.watching:
current_position = self.get_current_location()
if current_position:
self._check_zones(current_position)
time.sleep(0.1)

def test_geofencing():
"""Test function for the geofencing system."""
print("Starting Geofencing System Test...")
Initialize the system

geofencing = GeofencingSystem(API_KEY)
Test coordinates (New York City area)
test_zones = [
{
"center": Point(lat=40.7128, lng=-74.0060), # NYC
"radius": 100,
"name": "Times Square Zone"
},
{
"center": Point(lat=40.7527, lng=-73.9772), # Empire State
"radius": 200,
"name": "Empire State Zone"
}
]
Add test zones
for zone in test_zones:
zone_id = geofencing.add_zone(
center=zone["center"],
radius=zone["radius"],
name=zone["name"]
)
print(f"Added zone: {zone['name']}")

Test movement path
test_points = [
Point(lat=40.7128, lng=-74.0060), # Start at Times Square
Point(lat=40.7129, lng=-74.0061), # Move slightly
Point(lat=40.7130, lng=-74.0062), # Continue moving
Point(lat=40.7527, lng=-73.9772), # Move to Empire State
Point(lat=40.7528, lng=-73.9773), # Move slightly away
]

print("\nStarting movement simulation...")
geofencing.start_watching()
try:
for i, point in enumerate(test_points):
print(f"\nMoving to point {i+1}/{len(test_points)}")
geofencing.current_position = point
geofencing._check_zones(point)
time.sleep(3)
except KeyboardInterrupt:
print("\nTest interrupted by user")
finally:
geofencing.stop_watching()
print("\nTest completed")

if __name__ == "__main__":
test_geofencing()

 For the bandwidth API multiple iterations of updates were used to be able to send
the appropriate restrictions to the chosen devices, it was finalized with Shabodi bandwidth
API. The iterations were done with the input of Claude AI with the initial prompt being:

using a bandwidth API with room for token checking, can you make a code in python that when,
receiving a sign from a different function that will limit all bandwidth other than the current application?

And given the code:

import requests

client_id = "380dfca1-6539-4890-9595-21a57c8f907d"

client_secret = "enMKQcRauITqqdsDGsbNDUN_JlNgLYQkkdPhe5IF8Ws"

aep_host = "192.168.3.18" # Shabodi server IP

Function to request the access token

def get_token(client_id, client_secret):

 url = f"http://{aep_host}:31002/security/v1/token" # Adjusted port and endpoint

 headers = {

 "Content-Type": "application/json"

 }

 data = {

 "client_id": client_id,

 "client_secret": client_secret

 }

 # Making the POST request to obtain the token

 response = requests.post(url, headers=headers, json=data, verify=False)

 if response.status_code == 200:

 token = response.json().get("access_token")

 print("Access Token:", token)

 return token

 else:

 print("Failed to retrieve token:", response.status_code, response.json())

 return None

Run the function to get the token

if __name__ == "__main__":

 token = get_token(client_id, client_secret)

Finally, for the user interface it was initially created on Figma to decide on a design
and Claude AI was used to bring it as a Python program. With the initial designs being:

The prompts given to Claude AI to create the application code are as follows:

6.1 Bill of Materials

Beyond the necessary hardware, such as laptops and internet connection, no other
purchase was necessary. However, 1 month of Claude AI was bought to expediate the
progress of the team in program development. If needed future development may require
additional software or specialized hardware.

Item # Name of service Cost
1 Claude 1-month Pro Plan $20

6.2 Testing & Validation

Location APi Pinging Users

Objective: Ensure the application notifies when a user enters a restricted zone

Method: Utilized AI on Shabodi sandbox to simulate user enter a restricted zone.

Result: The Ai confirmed that the code successfully pings the user at the right increments
the closer it gets to the restricted zone and as the user enters the restricted zone.

Functional User Interface (UI)

Objective: Ensures the UI is functional for user and admin

Method: any error message the code produced, the AI-driven scripts would fix and retest
the interface by simulating user and admin interactions.

Result: The Ai verifies that user and admin could type in codes and access their respected
feature without issue

Demonstrating Shabodi Bandwidth Functionality

Objective: Ensure the application bandwidth usage is effective

Method: Conducted by using the Shabodi sandbox to simulate devices connected to the
network.

Results: The device would respond with the new bandwidth limitation and length of time it
would be limited for.

7 Conclusions and Recommendations for Future Work
In particular, the most important lessons were dedicate more time towards the prototyping
phase of the project, receive proper direction from the client before dedicating as much
time towards the design phases.

A couple concepts such as multi-floor capability was abandoned due to time constraints
and API limitations. If more time was allocated, it would have been put towards a single
functional application instead of multiple separate functions.

8 Bibliography
 Claude. https://claude.ai/new

Location API Prompts with dates

10-31-2024

I need you to create a code that uses a location API. This code will be used to create

restricted zones, when a restricted zone is created the code needs to be able to alert a user

not only when they are approaching a restricted zone but also when they are in one. There

should be two different sounds and vibrations for those notifications. We should also be

able to change and customize a restricted zone

complete this code in python.
can you add in a pinging section, where it will ping your location the closer you are to the

restricted zone and it will ping it less the further you are away from the restricted zone

write it using this API key 47C4ECCCB1EF134EB784BDB1660FD90B

It is for trimble maps and this is a publically available API
can you fill in some random info in the blank parts so that I can test the code
11-3-2024

can you take the code you have already given me but take out the pygame and the

notification portion because that has been causing me issues\

Now can you add a notification system that will notify a person when they are approaching

and when they are in a restricted zone, can you try not to use pygame because i couldn't get

that to work on my computer

in line 53 i am getting an invalid syntax error

 it says no module names modify two
11-13-2024

can you replace all of the places with tremble mentioned with a place to input our own api

information

the api i am going to use is a location api so I do not have a different api maps key

11-20-2024

https://claude.ai/new

Can you change this code so that it is set up to utilize googles geolocation api:
where do I incert googles api key
can you highlight where that is in my code
 i dont see that in my code can you add it
 idx says that no googlemaps module found
 how can i connect my idx code with my google cloud account so i can use the api
 will this allow me to use the google api in my idx code
i am getting this error API Error: REQUEST_DENIED (This API project is not
authorized to use this API.)
 i am not able to select my idx project though i can not find it
can you ensure that the test section of my code does no need the use of a speed api
 Yes

Application GUI prompts with dates:

11-15-2024

Can you make me an app in python using pQyT5 that looks like the picture, where the

writing for the login is black and the black "Log in" button is an interactive button

now can you change the code so that if the user enters 1111 and presses log in, it switches

to another screen that looks like the first picture (where the writing is in black or visible). If

the user enters anything other than 1111 and presses Log in, it switches to a screen that

looks like the second screen where there is an interactive map.

can you make the + and - buttons zoom in and zoom out

in the interactive map screen, can you make an option that allows the user to return to the

log in screen

11-19-2024

can you modify this code so that there is a 'back' option on every screen (except the initial

log in screen

Now can you add a settings option in this screen. In the settings screen, can you make an

option to toggle a button called 'bandwidth' on or off

there is an error warning: Traceback (most recent call last): File

"/Users/williamgillespie/PycharmProjects/userIntTest/updatedUI.py", line 2, in <module>

from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QVBoxLayout,

ImportError: cannot import name 'QSwitch' from 'PyQt5.QtWidgets'

(/Users/williamgillespie/PycharmProjects/userIntTest/.venv/lib/python3.9/site-

packages/PyQt5/QtWidgets.abi3.so)

can you change this code so that the settings button is only available on the coordinates

screen? not the map screen

now can you add another map screen with one big red circle and multiple small white

circles nearby after the user presses the 'set zone' button

Can you modify this code so that the small circle in the map is white and the title of the GUI

is 'Zonify'.

11-22-2024

Can you change the colour of the background of this app to one similar to the image

provided? (the colour codes are FFFFFF, F2F2F7, and 2F2B2B)

Now just make the writing in the text boxes black

There is a problem with the map screen as there is a white screen blocking the circles in the

back and the + and - sign should be black as well

Now can you add a zoom in and zoom out function in the map

The program works, but I get these messages:

/Users/williamgillespie/PycharmProjects/userIntTest/updatedUI.py:97:

DeprecationWarning: an integer is required (got type float). Implicit conversion to integers

using int is deprecated, and may be removed in a future version of Python.

painter.drawEllipse(self.x - self.radius, self.y - self.radius,

/Users/williamgillespie/PycharmProjects/userIntTest/updatedUI.py:104:

DeprecationWarning: an integer is required (got type float). Implicit conversion to integers

using int is deprecated, and may be removed in a future version of Python.

painter.drawEllipse(circle_x - small_radius, circle_y - small_radius, I also need you to change

the colour of the text on the settings screen to black

In the settings screen, I want there to be the word 'Bandwidth' in black next to the toggle

button. Can you add to the code

Bandwidth prompts with dates:

11/13/24

using a bandwidth API with room for token checking, can you make a code in python that when,
receiving a sign from a different function that will limit all bandwidth other than the current application?

11/20/24

Import the following code into the bandwidth code:

import requests

client_id = "380dfca1-6539-4890-9595-21a57c8f907d"

client_secret = "enMKQcRauITqqdsDGsbNDUN_JlNgLYQkkdPhe5IF8Ws"

aep_host = "192.168.3.18" # Shabodi server IP

Function to request the access token

def get_token(client_id, client_secret):

 url = f"http://{aep_host}:31002/security/v1/token" # Adjusted port and endpoint

 headers = {

 "Content-Type": "application/json"

 }

 data = {

 "client_id": client_id,

 "client_secret": client_secret

 }

 # Making the POST request to obtain the token

 response = requests.post(url, headers=headers, json=data, verify=False)

 if response.status_code == 200:

 token = response.json().get("access_token")

 print("Access Token:", token)

 return token

 else:

 print("Failed to retrieve token:", response.status_code, response.json())

 return None

Run the function to get the token

if __name__ == "__main__":

 token = get_token(client_id, client_secret)

9 APPENDICES

 APPENDIX I: Design Files

Deliverables - Can be found on MakerRepo.

Link to MakerRepo Project Page: GNG1103-P16-Zonify | MakerRepo

https://makerepo.com/DBaik015/2145.gng1103p16zonify

	List of Figures
	List of Tables
	1 Introduction
	2 Overview
	2.2 Cautions & Warnings

	3 Getting started
	3.1 Configuration Considerations
	3.2 User Access Considerations
	3.3 Accessing/setting up the System
	3.4 Exiting the System

	4 Using the System
	4.1 Log In Menu
	4.2 Create a Restricted zone
	4.3 Controlling Bandwidth

	5 Troubleshooting & Support
	5.1 Error Messages and Behaviours
	5.1.1 VPN Connection Error
	5.1.2 Shabodi API Connection Error

	5.2 Maintenance
	5.3 Support

	6 Product Documentation
	6.2 Testing & Validation

	7 Conclusions and Recommendations for Future Work
	8 Bibliography
	9 APPENDICES
	APPENDIX I: Design Files

