
1

User and Product Manual Instructions
This document is a template of a user and product manual. The client may wish to make

improvements on the prototype or need to fix it if something goes wrong or another group of
students may work to make a more rugged prototype. The document needs to be clear for
someone else who is not an engineer to use, maintain or reproduce the project. Include as
many images and diagrams for a better understanding. Keep it plain, simple, visual and logical.

In general, if you are not sure exactly what to include, imagine that this document was the
only thing that you had. Imagine also that your job was to add a new feature to the project that is
described in your document. What would you need to know?

GNG1103
Design Project User and Product Manual

Violent Shaking Detection System

Submitted by:

“Diamond Hands” - Group 6

Group Members Student Number

Karsten Lowe 300141177

Jason Clapiz 300172134

Leo Tan 300018447

Connor Harper 300166870

April 11, 2021

University of Ottawa

3

Table of Contents

List of Tables 6

List of Acronyms and Glossary 8

Introduction 10

Overview 11
Cautions & Warnings 12

Getting started 13
Set-up Considerations 13
User Access Considerations 14
Accessing the System 14
System Organization & Navigation 14
Exiting the System 14

Using the System 15
Data Collection 15

Data Interpretation 15
Data Saving 16
Excel Spreadsheet 16

Troubleshooting & Support 17
Error Messages or Behaviors 17
Special Considerations 17
Maintenance 17
Support 18

Product Documentation 19
Subsystem 1 Power Delivery 21

BOM 21
Equipment list 21
Instructions 21

Subsystem 2 Data Collection 22
BOM 22
Equipment List 22
Instructions 22

Subsystem 3 Data Transmission 23
BOM 23

4

Equipment List 23
Instructions 24

Subsystem 4 Data Logging 26
BOM 26
Equipment List 26
Instructions 27

Optional Subsystem Device Housings 30
BOM 30
Equipment List 30
Instructions 30

Testing & Validation 35

Conclusions and Recommendations for Future Work 38

Bibliography 40

APPENDIX I: Design Files 42

APPENDIX II: Other Appendices 44

5

List of Figures

Figure 1. VSDS Final Prototype 11

Figure 2. Data Communication Pathway 12

Figure 3. VSDS Circuit Diagram 20

Figure 4. VSDS Schematic 20

Figure 5. Circuit Diagram 9V to Arduino 21

Figure 6. Schematic 9V to Arduino 21

Figure 7. Circuit Diagram MPU 6050 to Arduino 22

Figure 8. Schematic MPU 6050 to Arduino 22

Figure 9. Circuit Diagram Arduino to Logic Convertor to Raspberry Pi 24

Figure 10. Schematic Arduino to Logic Convertor to Raspberry Pi 24

Figure 11. Showcasing location of Arduino upload feature. 25

Figure 12. Example of Output in Python Software 27

Figure 13. Example of .csv File Closed 28

Figure 14. Example of .csv file Opened 28

Figure 15. Example of Excel Spreadsheet Opened 29

Figure 16. Example of Graphed Data 29

Figure 17. Bottom Case Housing for Logic Convertor 31

Figure 18. Top Case Housing for Logic Convertor 32

Figure 19. Top Case Housing for MPU 6050 33

Figure 20. Bottom Case Housing for MPU 6050 34

Figure 21. Arduino 35

Figure 22. Breadboard 35

6

Figure 23. Data Transmission 35

Figure 24. Arduino 36

Figure 25. Logic Convertor 36

Figure 26. Raspberry Pi 36

Figure 27. Interpreted Values 37

7

List of Tables

Table 1. Acronyms 6

Table 2. Glossary 6

Table 3. Bill of Materials for Power Delivery Subsystem 13

Table 4. Bill of Materials for Data Collection Subsystem 14

Table 5. Bill of Materials for Data transmission 16

Table 6. Bill of Materials for Data Logging 20

Table 7. Bill of Materials for Optional Subsystem Housings 24

Table 8. Referenced Documents 35

8

List of Acronyms and Glossary

Table 1. Acronyms

Acronym Definition

BOM Bill of Materials

LC Logic Convertor

NB note?

OS Operating System

UPM User and Product Manual

VSDS Violent Shake Detection System

Table 2. Glossary

Term Acronym Definition

Comma-separated

values

csv A type of file which allows data to

be stored in a tabular format. This

form of data can be opened with

most spreadsheet programs.

Universal

asynchronous

receiver-transmitter

UART A very simple form of device to

device communication

General-purpose

input/output

GPIO A 40 pin header found on all

current Raspberry Pi boards

Stereolithography stl A file format native to the

stereolithography CAD software.

Often used for rapid prototyping,

3D printing, and computer-aided

manufacturing

Inno Setup script INO Is a software program for use with

Arduino systems. Contains source

9

code written in the Arduino

programming language and is used

to control Arduino boards.

integrated

development

environment

IDE software for building applications

that combines common developer

tools into a single graphical user

interface

10

1 Introduction

This User and Product Manual (UPM) provides the information necessary for drone

operators, intermediate clients and consumers to use or recreate the Violent Shaking Detection

System (VSDS) and for prototype documentation. This document contains information about the

general workings of the VSDS as well as how to use the system, how to troubleshoot potential

sources of error and instructions to assemble the VSDS. This document also contains information

about how to test the VSDS and ensure all components are working as intended.

With this UPM, anyone should be able to recreate the final working product as it was

originally made, some understanding of programming and experience with microcontrollers/

integrated circuits are not necessary but will aid in the understanding of the product as well as the

ease of use. Some understanding of how technical drawings work will aid in the understanding

and recreation of the component housings provided in this document.

Some assumptions made throughout the document is that one attempting to recreate the

VSDS should have a soldering iron, solder, 3D printer, flux, microsoft excel, arduino IDE, and the

Raspberry Pi has an SD card, uses Raspbian OS and can run Python 3. If access to one or more of

these components is not possible, some substitutes may be appropriate and are outlined further in

the UPM. It is assumed that 22 gauge wires are used throughout the VSDS.

11

2 Overview

Along the entire delivery transport chain, there is a consistent need for quality assurance

and the ability to monitor the status of the package until delivered to the customer. Drone delivery

is emerging recently as an extension of traditional delivery methods and requires a system capable

of ensuring product quality to create better value from their service standpoint.

JAMZ drone delivery requested an add-on module with the purpose of detecting violent

shaking. This system development followed constraints which were prioritized from JAMZ needs.

Those included a wired system, located above the package which transmits a constant data stream

relevant to the status of the package. With user experience in mind, an interpreted status in the

form of status updates makes it easier for the operator to understand the real time conditions of the

package. Furthermore, the flight data is compiled into graphs to better visualize when the package

was shaken, for how long the package was shaken, and how severely the package was shaken.

Figure 1. VSDS Final Prototype

12

The VSDS collects the position data of the package with an MPU 6050 sensor. The data is

then manipulated on the Arduino to represent the rate of change of the position data over time.

Thresholds are in place to interpret the rate of change, which corresponds to a response of stable,

moderate shaking, or violent shaking. The Logic Convertor (LC) reduces the voltage from the

Arduino to the Raspberry Pi. The Raspberry Pi displays the real time status of the package in a

serial monitor. The flight data is also recorded onto the Raspberry Pi which can be called upon as

a graph by the drone operator.

Figure 2. Data Communication Pathway

2.1 Cautions & Warnings

Whenever changing wires on components, or unplugging or plugging in components,

ensure the system is not powered and a static shock cannot jump to the components, damage can

occur to the components if these processes are not followed.

13

3 Getting started

The first part of the system is the MPU 6050 6 axis Gyroscope/ Accelerometer. This

sensor takes the tilt and vibration the chip feels and converts it into an electrical signal. This signal

is communicated to an Arduino microcontroller and is converted into the instantaneous velocity in

the pitch, roll and yaw axis of the chip.

The pitch, roll and yaw data is then compared to threshold values determined by arbitrary

constants written in the header of the Arduino file. These constants can be changed at any time by

changing the numerical variables of the moderateValue and violentValue. A higher numerical

value will require more intense shaking to trigger the notification, whereas a smaller value will

require less shaking in order to trigger the status.

The data is then printed in the serial monitor as an interpreted status with pitch and roll

data values and sent to the Raspberry Pi. In between the Raspberry Pi and the Arduino is a logic

converter that steps down the 5v operating signal of the Arduino to the 3.3v used by the Raspberry

Pi.

The Raspberry Pi then takes this data from the serial monitor and saves the information to

a .csv file, or comma separated value file. This csv file is named after the start date and time of the

flight and is stored on the local sd card. This csv file can be opened in Microsoft Excel at a later

time and the data converted into a graph using its built in graphing system.

3.1 Set-up Considerations

To recreate this product a few pieces of equipment will be necessary. Soldering iron and

solder, 3D printer, flux, Excel, Python 3, and Arduino IDE. If soldering materials are not

available, heat shrink connectors and a heat gun or crimping joiners and a crimping tool can be

used as a substitute. If access to a 3D printer is not an option, laser cut materials or other hand

created casings can be made, however the drawings provided may not be possible to replicate.

NB: Using crimping joiners or heat shrink joiners may affect the signal clarity of the final product.

14

3.2 User Access Considerations

The software has been heavily documented to facilitate understanding of the process

behind the code. The code has been developed such that refining the threshold values for

moderate and violent shaking are easy and intuitive so that almost no coding experience is

required to modify or maintain values. All components have been developed to be hot-swap ready.

If any component is damaged or destroyed, switching the part itself with a new copy will allow

the system to function as originally intended.

3.3 Accessing the System

Make sure all components are connected and powered on. Next, ensure that the Arduino

code is running on the Arduino. Then, run the Python code on the Raspberry Pi. If everything is

connected and powered properly with no errors when running the code, you should now be able to

access the system.

3.4 System Organization & Navigation

Flight data is recorded as .csv files named by the corresponding date and time, this file is

stored inside the user folder on the Raspberry Pi, denoted by the start date and time of the

corresponding flight.

3.5 Exiting the System

When you would like to exit the system you will need to stop running the Python code. To

do this you will need to enter in a keyboard interrupt. In Python the commonly used keyboard

interrupt is ctrl+c, this will interrupt the code and stop it from running. Once the code stops,

Python then closes the file you were writing into and saves it. You will have now successfully

excited the system.

https://github.com/OhYesMeLikey/GNG1103_G6_ProjectCodeFiles/blob/main/ArduinoCode.ino
https://github.com/OhYesMeLikey/GNG1103_G6_ProjectCodeFiles/blob/main/ArduinoCode.ino
https://github.com/OhYesMeLikey/GNG1103_G6_ProjectCodeFiles/blob/main/PythonCode.py

15

4 Using the System

The VSDS has 3 features, data collection, interpretation, and saving. As a complete

system, the input is registered by moving the MPU 6050 sensor to represent shaking. The VSDS

outputs an interpreted status and the … into a csv file.

The following subsections provide detailed, step-by-step instructions on how to use the

various functions or features of the violent shaking detection system.

4.1 Data Collection

The data collection system collects the acceleration and gyroscope data of the MPU 6050

in the X, Y, and Z direction to the Arduino where they are calculated to provide instantaneous

velocity of pitch, roll, and yaw. These data points are the data found in fractions of seconds and as

a result can be extremely high as instantaneous velocity can be upwards of 1000 degrees per

second in extreme cases. As the user rotates or shakes the sensor, numerical values should appear

in the serial monitor proportional to the intensity of movement. If the sample period of each data

point was longer than this prototype, the magnitude of the values should be smaller. This feature

does not require any specializations to operate, but an understanding of Arduino based

programming is required to understand the calculations that take place to obtain the values of

instantaneous velocity or to make modifications to the data sample rate code.

4.2 Data Interpretation

As data is recorded by the Data Collection system, the Arduino interprets the data and

classifies it as either “Stable”, “Moderate Shaking”, or “Violent Shaking”. These data values are

thresholds that can be modified. These values can be found on line 16 of the Arduino code, the

values of 690 for moderate shaking and 820 for violent shaking are arbitrary constants that are

compared with inbound values. The higher the number, the more violent the shaking would have

to be to trigger the data interpretation of each respective status. As the sensor is shaken, the output

of either stable, moderate shaking or violent shaking should be seen in the serial monitor

accompanying the recorded data values in pitch and roll.

16

4.3 Data Saving

The data saving system reads the data that is received from the arduino and creates and

writes this data into a .csv file on the Raspberry Pi. The Python code Reads the serial port and

receives all the data and outputs it into the serial monitor. The code also simultaneously creates a

new .csv file with the exact time and date and writes the received data into this file. The file will

keep writing until the code is stopped with a keyboard interrupt. A .csv file is a file that the data is

separated by a comma which allows for it to be interpreted by software like Excel and placed into

a spreadsheet.

4.3.1 Excel Spreadsheet

The .csv file can be opened using Excel and can be used to graph the data to visually

interpret. The .csv file is transferred over to a pc and can be opened using Excel, because the data

is separated by commas in this file type, Excel is able to interpret the data into rows and columns

placing it into a spreadsheet. Once in a spreadsheet, many different things can be used to interpret

this data such as visibly with a line chart.

17

5 Troubleshooting & Support

5.1 Error Messages or Behaviors

If “nan” appears where numerical data values should be in the serial, this means that the

physical connection is interrupted somewhere. Check cables for proper contacts to components,

solder components if possible. If wire contacts appear fine, check cables for continuity, it is

possible that cables have become damaged internally and the signal is not able to be transferred.

Also try resetting the system as sometimes the code gets stuck when wires are disconnected.

If there are issues with permissions to access serial ports on the Raspberry Pi, permissions

and/ or port communication may have to be enabled or updated on the Raspberry Pi. A helpful

guide to enable port permissions can be found here and a guide to enable hardware permissions

can be found here.

5.2 Special Considerations

If using a USB cable rather than a GPIO communication pathway between the Arduino

and Raspberry Pi, the python code will have to be modified to accept the USB as a port. Line 7

will have to be changed from /dev/ttyS0 to either /dev/ttyACM# or /dev/ttyAMA# where the # is

the number of the COM port used.

5.3 Maintenance

Inspect housings regularly for structural integrity, if plastic is degrading, flaking, or

becoming extra brittle, replacement of the case may be required. Check connections between

components for corrosion and clean contacts if required. Keep components stored in a cool, dry

environment out of direct sunlight. High humidity or direct liquid exposure can harm the

components, prolonged direct UV exposure can cause housings to become brittle and break easily.

Keep components clean and remove any foreign objects from direct contact with either casings or

components. Check wires for damage, if any wires are exposed, fraying or otherwise a fire or

shocking hazard, replace immediately.

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable/enabling-serial-console
https://roboticsbackend.com/raspberry-pi-hardware-permissions/

18

5.4 Support

Support for any issues can be posted in the comment section of this project’s MakerRepo.

Problems may already have been addressed and solved, and new questions can be answered by

those who have already created and followed the project. A description of the problem should be

provided along with any important files or pictures that help demonstrate the issue at hand. Other

specific issues can be directed to the Raspberry Pi helpline or the Arduino support page.

https://makerepo.com/ConnorHarper/840.gng1103d6diamond-hands
https://www.raspberrypi.org/contact/
https://support.arduino.cc/hc/en-us

19

6 Product Documentation

The final prototype consists of a power delivery, data gathering, data communication, data

storage subsystems and electronic housing. Each subsystem is centralized around the Arduino

Uno and branches off from there. For the use of this prototype, 22 gauge wiring is used

throughout, as the power draw of components is not particularly demanding. All wire connections

that did not plug into the Arduino Uno or the Raspberry Pi, were soldered to ensure a stable

connection. If solder is not available, crimping tools, heat shrink wire connectors or male-female

wire connectors are all possible substitutes.

The prototype originally created was powered with a 9 volt power supply, it is assumed

that most attempts to recreate this prototype will not have a power supply on hand so it is

substituted for a 9 volt battery in this document.

The sensor used in the original prototype was an MPU6050. Should other 6 axis

gyroscope/ accelerometer sensors be used, code may have to be changed to remain compatible

with alternative sensors. For more accurate data collection, a 9 Axis sensor could be used, and

would require changes to the provided code to calibrate it.

The Data transmission subsystem uses a GPIO UART connection type, if logic converters

are not available, a USB A - USB B connector between the Arduino and Raspberry Pi is

sufficient. USB connection is of a lower quality for the purposes of data transmission but is

functional.

The data logging subsystem assumes an SD card is already in the Raspberry Pi, other

forms of data storage on the Raspberry Pi for the purposes of this prototype have not been tested

and could result in varying levels of accuracy and frequency from the original design.

20

The housings were 3D printed in PLA plastic due to ease of access and quick iteration

times, however this stage is optional. If there is not a readily available 3D printer or need for

iteration, all housings can be bought from an online retailer. Climate resistance is also necessary

for the housings of the system, therefore materials such as MDF would not be recommended.

Figure 3. VSDS Circuit Diagram Figure 4. VSDS Schematic

21

6.1 Subsystem 1 Power Delivery

6.1.1 BOM
Table 3. Bill of Materials for Power Delivery Subsystem

Item Link Cost

9 Volt Battery 9V Battery $3.14/ battery

9 Volt Battery Connector 9V Connector $2.70/ item

Arduino Microcontroller Arduino Uno R3 $23

6.1.2 Equipment list

Wire

6.1.3 Instructions

Step 1.

Connect the wires from the Arduino Microcontroller to the 9V Power Supply

Figure 5. Circuit Diagram 9V to Arduino Figure 6. Schematic 9V to Arduino

https://www.amazon.ca/AmazonBasics-Everyday-Alkaline-Batteries-8-Pack/dp/B0774D64LT?th=1
https://www.amazon.ca/MN1604-Battery-Holder-Connector-Cable/dp/B07569QNPC/ref=sr_1_3?dchild=1&keywords=9v+battery+connector&qid=1617645961&s=hpc&sr=1-3
https://store.arduino.cc/usa/arduino-uno-rev3

22

6.2 Subsystem 2 Data Collection

6.2.1 BOM
Table 4. Bill of Materials for Data Collection Subsystem

Item Link Cost

MPU 6050 6 Axis Gyroscope/

Accelerometer
MPU 6050 $3.44

Arduino Microcontroller Arduino Uno R3 $23

6.2.2 Equipment List

Soldering Iron

Solder

Wire

6.2.3 Instructions

Step 1.

Connect the wires from the Arduino Microcontroller to the MPU 6050.

Figure 7. Circuit Diagram MPU 6050 to Arduino Figure 8. Schematic for wiring MPU 6050 to Arduino

https://www.amazon.ca/CANADUINO-InvenSense-MPU-6050-Accelerometer-Interface/dp/B07B2F2MB9/ref=cm_cr_arp_d_bdcrb_top?ie=UTF8
https://store.arduino.cc/usa/arduino-uno-rev3

23

6.3 Subsystem 3 Data Transmission

6.3.1 BOM
Table 5. Bill of Materials for Data transmission

Item Link Cost

Raspberry Pi 4 Raspberry Pi $47.75

Arduino Microcontroller Arduino Uno R3 $23

Logic Converter Logic Converter $9.95

6.3.2 Equipment List

Soldering Iron

Solder

Wire

Latest Arduino IDE (software)

Provided Arduino Code (i.e. ArduinoCode.ino)

Latest Python 3 (software)

Provided Python code (i.e. PythonCode.py)

https://www.buyapi.ca/product/raspberry-pi-4-model-b-2gb/?src=raspberrypi
https://store.arduino.cc/usa/arduino-uno-rev3
https://www.amazon.ca/SparkFun-Logic-Level-Converter-Bi-Directional/dp/B01N30ZCW9/ref=sr_1_7?dchild=1&keywords=logic+converter&qid=1614464113&s=electronics&sr=1-7

24

6.3.3 Instructions

Step 1.

Connect the wires from the Arduino Microcontroller to the Logic Convertor.

Connect the wires from the Raspberry Pi to the Logic Convertor.

Figure 9. Circuit diagram Arduino-LC-Raspberry Pi Figure 10. Schematic Arduino-LC-Raspberry P

Step 2.

If you have not already done so, make sure you have enabled UART connections through

GPIO on the Raspberry Pi. If you are having any trouble with this a good tutorial is found here.

Also ensure all port permissions are enabled. Again, if you are having trouble with this, a helpful

guide to enable port permissions can be found here.

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable/enabling-serial-console
https://roboticsbackend.com/raspberry-pi-hardware-permissions/

25

Step 3.

If the Raspberry Pi and the Arduino Uno are not already properly connected and turned on,

then do that first. If the following github link is available, then head to the link and download the

two files (i.e. ArduinoCode.ino and PythonCode.py) from the github repository and open the

corresponding file with the corresponding IDE. If the github link is not available, then scroll down

to Appendix II and carefully copy the corresponding code into the corresponding IDE (i.e.

Arduino Code.into into the Arduino IDE and PythonCode.py into the Python IDE). Save the

respective files with their respective names on to the desktop of the respective computers.

Figure 11. Showcasing location of Arduino upload feature.

https://github.com/OhYesMeLikey/GNG1103_G6_ProjectCodeFiles
https://github.com/OhYesMeLikey/GNG1103_G6_ProjectCodeFiles/blob/main/ArduinoCode.ino
https://github.com/OhYesMeLikey/GNG1103_G6_ProjectCodeFiles/blob/main/PythonCode.py

26

Step 5.

In the Arduino IDE, press the Upload button to upload the Arduino code that has been

copied and pasted or that has been downloaded. The following image shows where the Upload

button is located, but it is not the real representation of what the Arduino code is supposed to look

like. Assuming that the Raspberry Pi has been set up properly both in hardware and software,

open up the terminal of the Raspberry Pi and type in the following command without the quotes,

“cd ~/Desktop”. Enter the command “ls” to list all of the files on the Raspberry Pi desktop to

make sure that the PythonCode.py file is there. Lastly, enter the command “python

PythonCode.py” to run the python code.

6.4 Subsystem 4 Data Logging

6.4.1 BOM
Table 6. Bill of Materials for Data Logging

Item Link Cost

Raspberry Pi 4 Raspberry Pi $47.75

6.4.2 Equipment List

Latest Arduino IDE (software)

Provided Arduino Code

Latest Python 3 (software)

Provided Python code

Excel (software)

https://www.buyapi.ca/product/raspberry-pi-4-model-b-2gb/?src=raspberrypi

27

6.4.3 Instructions

Step 1.

If the Raspberry Pi, Arduino Uno, and MPU6050 are not already properly connected and

turned on, then do that first. Make sure the Arduino is running the INO code that was given. Then,

download the Python code from the provided github link and save the file onto the Raspberry Pi.

Step 2.

Open up any Python 3 software on the Raspberry Pi and run the Python code you

downloaded and saved onto the Raspberry Pi. At this point, you should see an output in the serial

monitor that looks something like Figure 12. At this point Python has now created and opened a

file on your Raspberry Pi and is now writing (logging) the data shown in the serial monitor into

that file.

Figure 12. Example of Output in Python software

https://github.com/OhYesMeLikey/GNG1103_G6_ProjectCodeFiles/blob/main/ArduinoCode.ino
https://github.com/OhYesMeLikey/GNG1103_G6_ProjectCodeFiles/blob/main/PythonCode.py
https://github.com/OhYesMeLikey/GNG1103_G6_ProjectCodeFiles

28

Step 3.

Once you have run the code/flight for as long as you needed/wanted, at anypoint you will

then stop the code using a keyboard interrupt (normally in Python the keyboard shortcut is:

ctrl+c). This will then stop your code and close your file that Python was writing and logging your

data in.

Step 4.

Next you will need to find your file. The file will be saved as the exact date and time that

you started running the program (code). Refer to Figure 13 for an example of how the file should

look. Once you have found this file you can open it up and it should show the same data you saw

in the serial monitor. Refer to Figure 14 for how the opened .csv file should look.

Figure 13. Example of .csv file closed Figure 14. Example of .csv file opened

Step 5.

Once your file has been located you then can transfer the .csv file over to your pc.

Step 6.

If you do not have Excel installed on your pc, install Excel software at this point. opening

the .csv file on your pc will open up an Excel spreadsheet with all your data. Refer to Figure 15

for how your spreadsheet should look.

29

Figure 15. Example of Excel spreadsheet opened

Step 7.

Now you can play around with the excel spreadsheet and create a line chart to show the

data. Refer to Figure 16 for an example of how your data can look once graphed.

Figure 16. Example of MPU 6050 data in a graph

https://www.excel-easy.com/examples/line-chart.html

30

6.5 Optional Subsystem Device Housings

Not necessary to recreate a functional prototype

6.5.1 BOM
Table 7. Bill of Materials for Optional Subsystem Housings

Item Link Cost

3D Printing Filament PLA Filament $32.99/ Spool

6.5.2 Equipment List

3D Printer

3D printing software

6.5.3 Instructions

Step 1.

Recreate the housings in a 3D modelling software for each component based on the

technical drawings provided below. Download the Python code that was provided from the

https://www.amazon.ca/AMZ3D-1-75mm-Printer-Filament-Black/dp/B01BZ5ND8O

31

Fig 17. Bottom case housing for logic converter

32

Fig 18. Top case housing for logic converter

33

Fig 19. Top housing for MPU 6050

34

Fig 20. Bottom housing for MPU 6050

Step 2.

Export your files to .stl format.

Step 3.

Import your .stl files into your 3D printing software of choice and prepare your print.

Step 4.

Print the housings in PLA

35

6.6 Testing & Validation

Test 1. Proof of concept data collection

This test focused on subsystem 2, which consisted of validating the data collected from a

sensor on the Arduino. With the sensors wired temporarily using pins and a breadboard, the

Arduino displayed the data collected and changed with respect to the MPU 6050’s movement.

Therefore, this test validated our concept data collection subsystem.

Figure 21. Arduino Figure 22. Breadboard Figure 23. Data Transmission

36

Test 2. Proof of concept data transmission

This test focused on subsystem 3, which consisted of validating the data received on the

Raspberry Pi. The MPU 6050 sensor was wired to the Arduino, which was then connected to the

Raspberry Pi through a LC. Once the sensor was moved, providing an input, the test focused on

reading the values on a serial monitor via the Raspberry Pi. Therefore, once the values were

displayed the test was complete, validating our concept of data transmission.

Figure 24. Arduino Figure 25. LC Figure 26. Raspberry Pi

37

Test 3. Interpreted Values

Referring to Figure 27, this test focused on defining the threshold ranges corresponding to

stable, moderate, or violent shaking. Using qualitative measurements to represent the severity of

shaking, those values were determined as the thresholds to updating the string response.

Figure 27. Interpreted values

Test 4. Saving Flight Data

This test focused on saving the flight data as a .csv file which is stored on a SD card on the

Raspberry Pi. The file will be stored under the active user when the software was started. The

format of the .csv file will follow year, month, day, time of when the software was started. Refer

to Figure 13 and Figure 14 for visuals of how the file should look when closed and opened.

38

7 Conclusions and Recommendations for Future Work

Summary of Lessons:

The main lessons that this team learned from this project were Communication, Team

coordination, Time management, Prioritization, and Contingency Plans. The biggest, if not the

biggest reason, that the project was successful was due to the constant, effective, and immediate

communication among each team member. Since everyone on the team was always

communicating with each other, they were able to do their own parts of the project as the project

continued to progress without many setbacks. Since everyone’s overall communication was

always on point, the team’s coordination was also well executed as each team member discussed

and agreed on the realistic goal(s) that were set for those dates and times while everyone’s

personal life schedule was taken into consideration. This result lead to consistent and proper use

of time usage during the team meetings, and the time spent on progressing the project was

properly managed throughout each meeting. As the project progressed toward the first prototype,

the team encountered a minor setback where a LED was used as a replacement for the MPU6050

sensor to check that data can be transmitted from LED to Arduino to Raspberry Pi, all due to the

fact that the MPU6050 sensor was the only component that couldn’t arrive on time. The LED

replacement was a big prioritization as the team needed a physical working prototype to show the

client, and the team decided to proceed with this working yet delayed working prototype for

progressing further into the project. Lastly, the team encountered another set back where

Deliverable C was not correctly done, so the team had to redo it as Deliverable D requires

Deliverable C to be correctly finished. No one expected anything like this to happen, but everyone

put extra effort into completing Deliverable C and D as they were the most crucial deliverables for

the future prototyping deliverables.

39

More Time:

If more time was allotted to the development of this prototype, considerations would be given to

creating a notification that would be sent to the client who ordered the food in the event of the

violent shaking occuring during the flight. Research into wireless communication of data would

have been interesting to work around. The potential to learn about these wireless options would

have proven to be very beneficial but is outside the scope of the time required to develop this

product.

40

8 Bibliography

.INO File Extension. INO File Extension - What is an .ino file and how do I open it? (2021, March

31). https://fileinfo.com/extension/ino.

Bi-Directional Logic Level Converter Hookup Guide. (n.d.).

https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-hookup-guide/all.

Dejan. (2021, February 5). Arduino and MPU6050 Accelerometer and Gyroscope Tutorial.

HowToMechatronics.

https://howtomechatronics.com/tutorials/arduino/arduino-and-mpu6050-accelerometer-and

-gyroscope-tutorial/.

Fitzpatrick, M. (2021, April 9). Plotting in PyQt5 - Using PyQtGraph to create interactive plots in

your apps. Learn PyQt. https://www.learnpyqt.com/tutorials/plotting-pyqtgraph/.

GPIO. GPIO - Raspberry Pi Documentation. (n.d.).

https://www.raspberrypi.org/documentation/usage/gpio/#:~:text=A%20powerful%20featur

e%20of%20the,Zero%20and%20Pi%20Zero%20W).

Hrisko, J. (2019, November 25). MPU6050 Arduino High-Frequency Accelerometer and

Gyroscope Data Saver. Maker Portal.

https://makersportal.com/blog/2019/8/17/arduino-mpu6050-high-frequency-accelerometer

-and-gyroscope-data-saver.

Monk, S. (n.d.). Adafruit's Raspberry Pi Lesson 5. Using a Console Cable. Adafruit Learning

System.

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable/enabling-s

erial-console.

Oscar. (2018, March 23). Raspberry Pi and Arduino Connected Over Serial GPIO. Oscar Liang.

https://oscarliang.com/raspberry-pi-and-arduino-connected-serial-gpio/.

https://fileinfo.com/extension/ino
https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-hookup-guide/all
https://howtomechatronics.com/tutorials/arduino/arduino-and-mpu6050-accelerometer-and-gyroscope-tutorial/
https://howtomechatronics.com/tutorials/arduino/arduino-and-mpu6050-accelerometer-and-gyroscope-tutorial/
https://www.learnpyqt.com/tutorials/plotting-pyqtgraph/
https://www.raspberrypi.org/documentation/usage/gpio/#:~:text=A%20powerful%20feature%20of%20the,Zero%20and%20Pi%20Zero%20W
https://www.raspberrypi.org/documentation/usage/gpio/#:~:text=A%20powerful%20feature%20of%20the,Zero%20and%20Pi%20Zero%20W
https://makersportal.com/blog/2019/8/17/arduino-mpu6050-high-frequency-accelerometer-and-gyroscope-data-saver
https://makersportal.com/blog/2019/8/17/arduino-mpu6050-high-frequency-accelerometer-and-gyroscope-data-saver
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable/enabling-serial-console
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable/enabling-serial-console
https://oscarliang.com/raspberry-pi-and-arduino-connected-serial-gpio/

41

Setup Raspberry Pi Hardware Permissions - The Robotics Back. End. (2020, June 22).

https://roboticsbackend.com/raspberry-pi-hardware-permissions/.

Watkins, J. (2019, August 12). Configuring The GPIO Serial Port On Raspbian Jessie and Stretch

Including Pi 3 and 4. Spell Foundry.

https://spellfoundry.com/2016/05/29/configuring-gpio-serial-port-raspbian-jessie-including

-pi-3-4/.

What is a .CSV file and what does it mean for my ecommerce business? BigCommerce. (2021,

April 9).

https://www.bigcommerce.ca/ecommerce-answers/what-csv-file-and-what-does-it-mean-m

y-ecommerce-business/#:~:text=A%20CSV%20is%20a%20comma,Microsoft%20Excel%

20or%20Google%20Spreadsheets.

What is an IDE? (n.d.).

https://www.redhat.com/en/topics/middleware/what-is-ide#:~:text=An%20integrated%20d

evelopment%20environment%20(IDE,graphical%20user%20interface%20(GUI).

What is UART Protocol? UART Communication Explained. Arrow.com. (2020, March 6).

https://www.arrow.com/en/research-and-events/articles/what-is-uart-protocol-uart-commu

nication-explained#:~:text=Universal%20asynchronous%20receiver%2Dtransmitter%20(

UART,ICs)%20or%20as%20individual%20components.

Wikimedia Foundation. (2021, March 13). STL (file format). Wikipedia.

https://en.wikipedia.org/wiki/STL_(file_format)#:~:text=1987,and%20%22Standard%20T

essellation%20Language%22.

https://roboticsbackend.com/raspberry-pi-hardware-permissions/
https://spellfoundry.com/2016/05/29/configuring-gpio-serial-port-raspbian-jessie-including-pi-3-4/
https://spellfoundry.com/2016/05/29/configuring-gpio-serial-port-raspbian-jessie-including-pi-3-4/
https://www.bigcommerce.ca/ecommerce-answers/what-csv-file-and-what-does-it-mean-my-ecommerce-business/#:~:text=A%20CSV%20is%20a%20comma,Microsoft%20Excel%20or%20Google%20Spreadsheets
https://www.bigcommerce.ca/ecommerce-answers/what-csv-file-and-what-does-it-mean-my-ecommerce-business/#:~:text=A%20CSV%20is%20a%20comma,Microsoft%20Excel%20or%20Google%20Spreadsheets
https://www.bigcommerce.ca/ecommerce-answers/what-csv-file-and-what-does-it-mean-my-ecommerce-business/#:~:text=A%20CSV%20is%20a%20comma,Microsoft%20Excel%20or%20Google%20Spreadsheets
https://www.redhat.com/en/topics/middleware/what-is-ide#:~:text=An%20integrated%20development%20environment%20
https://www.redhat.com/en/topics/middleware/what-is-ide#:~:text=An%20integrated%20development%20environment%20
https://www.arrow.com/en/research-and-events/articles/what-is-uart-protocol-uart-communication-explained#:~:text=Universal%20asynchronous%20receiver%2Dtransmitter%20(UART,ICs)%20or%20as%20individual%20components
https://www.arrow.com/en/research-and-events/articles/what-is-uart-protocol-uart-communication-explained#:~:text=Universal%20asynchronous%20receiver%2Dtransmitter%20(UART,ICs)%20or%20as%20individual%20components
https://www.arrow.com/en/research-and-events/articles/what-is-uart-protocol-uart-communication-explained#:~:text=Universal%20asynchronous%20receiver%2Dtransmitter%20(UART,ICs)%20or%20as%20individual%20components
https://en.wikipedia.org/wiki/STL_(file_format)#:~:text=1987,and%20%22Standard%20Tessellation%20Language%22
https://en.wikipedia.org/wiki/STL_(file_format)#:~:text=1987,and%20%22Standard%20Tessellation%20Language%22

42

APPENDICES

9 APPENDIX I: Design Files

The “deliverable” documents included below in table 8 progressively build on top of each

other, in alphabetical order from B-J. The deliverables have individual focuses pertaining to the

overall design process.

Table 8. Referenced Documents

Document Name Document Location and/or URL Issuance Date

Makerepo https://makerepo.com/ConnorHarper/840.

gng1103d6diamond-hands

Mar 15, 2021

Deliverable B https://docs.google.com/document/d/1Lj7

XM3FdZXyAfNJpMevaZX0mDNR_I-xj

bY-vGX9xS9M/edit?usp=sharing

Jan 31, 2021

Deliverable C https://docs.google.com/document/d/1xsB

NRWlv6T4OBLY8CV6IdEB3hU24dsCu

VeMGvUIkZ1Y/edit?usp=sharing

Feb 7, 2021

Deliverable D https://docs.google.com/document/d/1L_e

dRZlOOTdwT55SU-SGZNinIeab9xJqyK

f-JqrywcE/edit?usp=sharing

Feb 21, 2021

Deliverable E https://docs.google.com/document/d/126u

pKvCQWXuLUPKrPNGL03U4kpOyeie0

sdA9aZ0Tc54/edit?usp=sharing

Feb 28, 2021

https://makerepo.com/ConnorHarper/840.gng1103d6diamond-hands
https://makerepo.com/ConnorHarper/840.gng1103d6diamond-hands
https://docs.google.com/document/d/1Lj7XM3FdZXyAfNJpMevaZX0mDNR_I-xjbY-vGX9xS9M/edit?usp=sharing
https://docs.google.com/document/d/1Lj7XM3FdZXyAfNJpMevaZX0mDNR_I-xjbY-vGX9xS9M/edit?usp=sharing
https://docs.google.com/document/d/1Lj7XM3FdZXyAfNJpMevaZX0mDNR_I-xjbY-vGX9xS9M/edit?usp=sharing
https://docs.google.com/document/d/1xsBNRWlv6T4OBLY8CV6IdEB3hU24dsCuVeMGvUIkZ1Y/edit?usp=sharing
https://docs.google.com/document/d/1xsBNRWlv6T4OBLY8CV6IdEB3hU24dsCuVeMGvUIkZ1Y/edit?usp=sharing
https://docs.google.com/document/d/1xsBNRWlv6T4OBLY8CV6IdEB3hU24dsCuVeMGvUIkZ1Y/edit?usp=sharing
https://docs.google.com/document/d/1L_edRZlOOTdwT55SU-SGZNinIeab9xJqyKf-JqrywcE/edit?usp=sharing
https://docs.google.com/document/d/1L_edRZlOOTdwT55SU-SGZNinIeab9xJqyKf-JqrywcE/edit?usp=sharing
https://docs.google.com/document/d/1L_edRZlOOTdwT55SU-SGZNinIeab9xJqyKf-JqrywcE/edit?usp=sharing
https://docs.google.com/document/d/126upKvCQWXuLUPKrPNGL03U4kpOyeie0sdA9aZ0Tc54/edit?usp=sharing
https://docs.google.com/document/d/126upKvCQWXuLUPKrPNGL03U4kpOyeie0sdA9aZ0Tc54/edit?usp=sharing
https://docs.google.com/document/d/126upKvCQWXuLUPKrPNGL03U4kpOyeie0sdA9aZ0Tc54/edit?usp=sharing

43

Deliverable F https://docs.google.com/document/d/1Cey

UVcyK8yQ_38LjOjY327novW3uuQ83f

EJQeiRNOvw/edit?usp=sharing

March 7, 2021

Deliverable G https://docs.google.com/document/d/1xX

MvCvd4nFpu7Tpr4sGph0JmIRzrTiAulJ0

wWISLHpY/edit?usp=sharing

March 14,

2021

Deliverable H https://docs.google.com/document/d/1Cw

5TDMONGZS05tNay_wWRREleB-SSge

iLc1hK1dFzQg/edit?usp=sharing

March 28,

2021

Deliverable I https://docs.google.com/presentation/d/1S

PwVEv5JGYUbE3Bb4pgeicYEA63J3La

K7qU15o9-zp8/edit?usp=sharing

March 20,

2021

Deliverable J https://docs.google.com/presentation/d/13

1XFc69X23ANlsjxa6jr0KygCYO51e59h

ESTF3DuhI0/edit?usp=sharing

March 22,

2021

https://docs.google.com/document/d/1CeyUVcyK8yQ_38LjOjY327novW3uuQ83fEJQeiRNOvw/edit?usp=sharing
https://docs.google.com/document/d/1CeyUVcyK8yQ_38LjOjY327novW3uuQ83fEJQeiRNOvw/edit?usp=sharing
https://docs.google.com/document/d/1CeyUVcyK8yQ_38LjOjY327novW3uuQ83fEJQeiRNOvw/edit?usp=sharing
https://docs.google.com/document/d/1xXMvCvd4nFpu7Tpr4sGph0JmIRzrTiAulJ0wWISLHpY/edit?usp=sharing
https://docs.google.com/document/d/1xXMvCvd4nFpu7Tpr4sGph0JmIRzrTiAulJ0wWISLHpY/edit?usp=sharing
https://docs.google.com/document/d/1xXMvCvd4nFpu7Tpr4sGph0JmIRzrTiAulJ0wWISLHpY/edit?usp=sharing
https://docs.google.com/document/d/1Cw5TDMONGZS05tNay_wWRREleB-SSgeiLc1hK1dFzQg/edit?usp=sharing
https://docs.google.com/document/d/1Cw5TDMONGZS05tNay_wWRREleB-SSgeiLc1hK1dFzQg/edit?usp=sharing
https://docs.google.com/document/d/1Cw5TDMONGZS05tNay_wWRREleB-SSgeiLc1hK1dFzQg/edit?usp=sharing
https://docs.google.com/presentation/d/1SPwVEv5JGYUbE3Bb4pgeicYEA63J3LaK7qU15o9-zp8/edit?usp=sharing
https://docs.google.com/presentation/d/1SPwVEv5JGYUbE3Bb4pgeicYEA63J3LaK7qU15o9-zp8/edit?usp=sharing
https://docs.google.com/presentation/d/1SPwVEv5JGYUbE3Bb4pgeicYEA63J3LaK7qU15o9-zp8/edit?usp=sharing
https://docs.google.com/presentation/d/131XFc69X23ANlsjxa6jr0KygCYO51e59hESTF3DuhI0/edit?usp=sharing
https://docs.google.com/presentation/d/131XFc69X23ANlsjxa6jr0KygCYO51e59hESTF3DuhI0/edit?usp=sharing
https://docs.google.com/presentation/d/131XFc69X23ANlsjxa6jr0KygCYO51e59hESTF3DuhI0/edit?usp=sharing

44

10 APPENDIX II: Other Appendices

Github Link to Access and Download the Files

The following Arduino code is to be ran on the Arduino IDE (from the ArduinoCode.ino file):

/*

MPU 6050 data collection and transmission for JAMZ drone delivery

by Connor Harper, Jason Clapiz, Karsten Lowe, Leo Tan

based on software originally written by Dejan https://howtomechatronics.com

*/

#include <Wire.h>

const int MPU = 0x68; // MPU6050 I2C address

float AccX, AccY, AccZ;//accelerometer reading

float GyroX, GyroY, GyroZ;//gyroscope reading

float accAngleX, accAngleY, gyroAngleX, gyroAngleY;//Accelerometer and gyroscope angle

float roll, pitch, yaw;//drone's position data variables

float AccErrorX, AccErrorY, GyroErrorX, GyroErrorY, GyroErrorZ;//calculated error during

MPU6050 self calibration

float elapsedTime, currentTime, previousTime;//tracks time based on when the code was

initialized

int c = 0;//count calibration readings

int moderateValue = 690, violentValue = 820; //threshold range value

void setup() {

Serial.begin(19200);//baud rate for the serial monitor

Wire.begin(); // Initialize communication

Wire.beginTransmission(MPU); // Start communication with MPU6050 // MPU=0x68

Wire.write(0x6B); // Talk to the register 6B

Wire.write(0x00); // Make reset - place a 0 into the 6B register

Wire.endTransmission(true); //end the transmission

calculate_IMU_error();//runs the error calculation function before the main code executes

}

void loop() {

// === Read acceleromter data === //

https://github.com/OhYesMeLikey/GNG1103_G6_ProjectCodeFiles
https://github.com/OhYesMeLikey/GNG1103_G6_ProjectCodeFiles/blob/main/ArduinoCode.ino

45

Wire.beginTransmission(MPU);//starts communication with the MPU 6050

Wire.write(0x3B); // Start with register 0x3B (ACCEL_XOUT_H)

Wire.endTransmission(false);//prevents the communication from ending

Wire.requestFrom(MPU, 6, true); // Read 6 registers total, each axis value is stored in 2

registers

//For a range of +-2g, we need to divide the raw values by 16384, according to the datasheet

AccX = (Wire.read() << 8 | Wire.read()) / 8192.0; // X-axis value

AccY = (Wire.read() << 8 | Wire.read()) / 8192.0; // Y-axis value

AccZ = (Wire.read() << 8 | Wire.read()) / 8192.0; // Z-axis value

// Calculating Roll and Pitch from the accelerometer data

accAngleX = (atan(AccY / sqrt(pow(AccX, 2) + pow(AccZ, 2))) * 180 / PI) - AccErrorX;

//calculates the acceleration in the X axis while taking into account the error found during

self calibration

accAngleY = (atan(-1 * AccX / sqrt(pow(AccY, 2) + pow(AccZ, 2))) * 180 / PI) -

AccErrorY;//calculates the acceleration in the Y axis while taking into account the error found

during self calibration

// === Read gyroscope data === //

previousTime = currentTime; // Previous time is stored before the actual time read

currentTime = millis(); // Current time actual time read

elapsedTime = (currentTime - previousTime) / 1000; // Divide by 1000 to get seconds

Wire.beginTransmission(MPU);// Start communication with MPU6050 // MPU=0x68

Wire.write(0x43); // Gyro data first register address 0x43

Wire.endTransmission(false);//prevents the communication from ending

Wire.requestFrom(MPU, 6, true); // Read 4 registers total, each axis value is stored in 2

registers

GyroX = (Wire.read() << 8 | Wire.read()) / 131.0; // For a 250deg/s range we have to divide

first the raw value by 131.0, according to the datasheet

GyroY = (Wire.read() << 8 | Wire.read()) / 131.0;

GyroZ = (Wire.read() << 8 | Wire.read()) / 131.0;

// Correct the outputs with the calculated error values, the error will self correct based on

the calibration when the system was initialized

GyroX = GyroX - GyroErrorX;

GyroY = GyroY - GyroErrorY;

GyroZ = GyroZ - GyroErrorZ;

// Modifies the stored gyroscope angles based on the previous recorded angles

46

gyroAngleX = gyroAngleX + GyroX;

gyroAngleY = gyroAngleY + GyroY;

yaw = yaw + GyroZ;

// Complementary filter - combine acceleromter and gyro angle values

gyroAngleX = 0.96 * gyroAngleX + 0.04 * accAngleX;

gyroAngleY = 0.96 * gyroAngleY + 0.04 * accAngleY;

//Renames effective variables for ease of use during angle filtering

roll = gyroAngleX;

pitch = gyroAngleY;

//checks read values against set values that constitute violent or moderate shaking

//if one of the conditions is met, the code skips over the rest in an effort to optimise run

time.

if (roll > violentValue || roll < -violentValue || pitch > violentValue || pitch <

-violentValue) {

Serial.print("Violent_Shaking, ");

}

else if (roll > moderateValue && roll < violentValue){

Serial.print("Moderate_Shaking, ");

}

else if(roll < -moderateValue && roll > -violentValue){

Serial.print("Moderate_Shaking, ");

}

else if(pitch > moderateValue && pitch < violentValue){

Serial.print("Moderate_Shaking, ");

}

else if(pitch < -moderateValue && pitch > -violentValue) {

Serial.print("Moderate_Shaking, ");

}

else {

Serial.print("Stable, ");

}

printValues(roll, pitch, yaw);

}

void calculate_IMU_error() {

47

// This funtion is called in the setup section to calculate the accelerometer and gyro data

error

while (c < 200) {// Read Accelerometer values 200 times

Wire.beginTransmission(MPU);

Wire.write(0x3B);

Wire.endTransmission(false);

Wire.requestFrom(MPU, 6, true);

AccX = (Wire.read() << 8 | Wire.read()) / 8192.0;//divide by 8192 to get the proper axis

value based on data sheet

AccY = (Wire.read() << 8 | Wire.read()) / 8192.0;

AccZ = (Wire.read() << 8 | Wire.read()) / 8192.0;

// Sum all readings using trig to calculate the accelerational error

AccErrorX = AccErrorX + ((atan((AccY) / sqrt(pow((AccX), 2) + pow((AccZ), 2))) * 180 /

PI));

AccErrorY = AccErrorY + ((atan(-1 * (AccX) / sqrt(pow((AccY), 2) + pow((AccZ), 2))) * 180 /

PI));

c++;

}

//Divide the sum by 200 to get the error value

AccErrorX = AccErrorX / 200;

AccErrorY = AccErrorY / 200;

c = 0;

// Read gyro values 200 times

while (c < 200) {

Wire.beginTransmission(MPU);

Wire.write(0x43);

Wire.endTransmission(false);

Wire.requestFrom(MPU, 6, true);

GyroX = Wire.read() << 8 | Wire.read();

GyroY = Wire.read() << 8 | Wire.read();

GyroZ = Wire.read() << 8 | Wire.read();

// Sum all readings

GyroErrorX = GyroErrorX + (GyroX / 131.0);

GyroErrorY = GyroErrorY + (GyroY / 131.0);

GyroErrorZ = GyroErrorZ + (GyroZ / 131.0);

48

c++;

}

//Divide the sum by 200 to get the error value

GyroErrorX = GyroErrorX / 200;

GyroErrorY = GyroErrorY / 200;

GyroErrorZ = GyroErrorZ / 200;

}

//print the calculated values into the serial monitor

void printValues(float roll, float pitch, float yaw) {

Serial.print(roll);

Serial.print(",");

Serial.println(pitch);

//Serial.print(",");

// Serial.println(yaw);

}

The following Python code is to be ran on the Python IDE (from the PythonCode.py file):

import serial

from datetime import datetime

if __name__ == '__main__':

flag = 0

current_time = datetime.now().strftime("%Y_%m_%d-%I_%M_%S_%p")

file = open (str(current_time)+".csv", 'w')

ser = serial.Serial('/dev/ttyS0', 19200, timeout=1)

ser.flush()

while True:

if ser.in_waiting > 0:

line = ser.readline().decode('utf-8').rstrip()

print(line)

file.write (str(line))

file.close()

https://github.com/OhYesMeLikey/GNG1103_G6_ProjectCodeFiles/blob/main/PythonCode.py

49

Download the printable files for the MPU6050 and the Logic Converter.

https://www.thingiverse.com/thing:4819325
https://www.thingiverse.com/thing:4819335/files

