

i

GNG 2101

Design Project User and Product Manual

TREMORE REDUCING MOUSE CONTROL

Submitted by:

Mouse Maneuvers - GROUP 1.3

Maria Abril, 300227646

Jason Jin, 300184747

Matthew Emmanuel, 300240312

07/04/2023

University of Ottawa

iiClick here to enter text.

Table of Contents

Table of Contents .. ii

List of Figures ..v

List of Tables ... vi

List of Acronyms and Glossary ... viii

1 Introduction ..1

2 Overview ..2

2.1 Conventions ...5

2.2 Cautions & Warnings ...5

3 Getting started ..8

3.1 Configuration Considerations ..52

3.2 User Access Consideration ..54

3.3 Accessing/setting up the System ..54

3.4 System Organization & Navigation ...54

3.5 Exiting the System ...57

4 Using the System ...62

4.1 <Mouse Movement> ..62

4.1.1 <Joystick Click> ..62

5 Troubleshooting & Support ...64

5.1 Error Messages or Behaviors ...64

5.2 Special Considerations ...65

5.3 Maintenance ...65

iiiClick here to enter text.

5.4 Support ...66

6 Product Documentation ...67

6.1 Mechanical subsystem ...67

6.1.1 BOM (Bill of Materials) ..67

6.1.2 Equipment list ..67

6.1.3 Instructions ...67

6.2 Electrical subsystem...68

6.2.1 BOM (Bill of Materials) ..68

6.2.2 Equipment list ..69

6.2.3 Instructions ...69

6.3 Software subsystem ...69

6.3.1 BOM (Bill of Materials) ..69

6.3.2 Equipment list ..69

6.3.3 Instructions ...69

6.4 Testing & Validation..70

7 Conclusions and Recommendations for Future Work ...71

8 Bibliography ..72

APPENDICES ...73

9 APPENDIX I: Design Files ...73

10 APPENDIX II: Other Appendices ...74

ivClick here to enter text.

vClick here to enter text.

List of Figures

Figure 1: Final Prototype
Figure 2: Final Prototype with all components together
Figure 3: Electrical connections
Figure 4: Flowchart
Figure 5: Finding port information on Arduino IDE
Figure 6: LINE 20 from the IntelliJ IDEA CE code
Figure 7: Arduino IDE and IntelliJ IDEA CE Applications
Figure 8: Electrical connections to the Arduino Uno Board
Figure 9: Type A, Type B USB
Figure 10: Type B USB connection to the Arduino Uno Board
Figure 11: Type A connection to computer device
Figure 12: Arduino Uno Light meaning it is ON
Figure 13: New Sketch creation
Figure 14: File icon to create a New Sketch if New Sketch does not appear from the start
Figure 15: Board information
Figure 16: Port information – connected properly
Figure 17: Port information – not connected
Figure 18: Manually selecting port information
Figure 19: Windows operating system, COM port information
Figure 20: Pasting Code in the blank space
Figure 21: Uploaded the Joystick Program code to the Arduino IDE
Figure 22: The 2 main files required to download
Figure 23: Java SE Development Kit 8u251 File
Figure 24: Creating new project on IntelliJ IDEA CE
Figure 25: New project Tab
Figure 26: Adding JDK file
Figure 27: Finding the Java SE Development Kit 8u251 File
Figure 28: Selecting the 1.8 Oracle OpenJDK version 1.8.0_251 File
Figure 29: Creating New Project
Figure 30: Project Structure Tab
Figure 31: Libraries Tab
Figure 32: Getting setup to add the 2 libraries
Figure 33: Finding the 2 library files in your download files folder
Figure 34: Selecting the jna-3.2.7-sources 2 jar file
Figure 35: Adding the jna-3.2.7-sources 2 jar file
Figure 36: The jna-3.2.7-sources 2 jar file has been added
Figure 37: Finding the mfz-rxtx-2.2-20081207-win-x86 file
Figure 37: Finding the mfz-rxtx-2.2-20081207-win-x86 file
Figure 39: Adding the RXTXcomm.jar file
Figure 40: The Choose Modules Tab
Figure 41: Updated Project Structure tab with the 2 main libraries added
Figure 42: The RXTXcomm Tab
Figure 43: Double click the mfz-rxtx-2.2-20081207-win-x86 file

viClick here to enter text.

Figure 44: Adding the rxtxSerial.dll file
Figure 45: Fully updated Project Structure Tab
Figure 46: Adding the entire Project Structure
Figure 47: Pasting the code in the blank space
Figure 48: Uploaded the Java Code on IntelliJ IDEA CE
Figure 49: Verifying the Arduino Code
Figure 50: Done compiling message
Figure 51: Uploading the Code onto the Arduino Uno board
Figure 52: Done uploading message
Figure 53: Building the IntelliJ IDEA CE project
Figure 54: Checking for errors
Figure 55: Ensuring line 13 is correct
Figure 56: Running the code
Figure 57: Thumb Joystick Device
Figure 58: Arduino Uno Board and USB cable
Figure 59: Main components
Figure 60: Verifying and uploading the joystick program code
Figure 61: Stopping code run on IntelliJ IDEA CE
Figure 62: Exiting IntelliJ IDEA CE application
Figure 63: Exiting Arduino IDE application
Figure 64: TYPE A disconnected from computer device
Figure 65: The 5 wires disconnected from the Arduino Uno Board
Figure 66: File -> Repair IDE function
Figure 67: TIME_OUT = <insert number 1-2000>
Figure 68: Assembly view of Mechanical subsystem
Figure 69: 3 different 3D Models

Figure 70: Conceptual Design
Figure 71: Analog Read of the joystick electrical connections
Figure 72: Analog Read of the joystick code

Figure 73: The coordinates of the X and Y axis of the joystick.

List of Tables

Table 1. Acronyms ... viii

Table 2. Glossary ... viii

Table 3. Referenced Documents ... 73

viiClick here to enter text.

viiiClick here to enter text.

List of Acronyms and Glossary

Table 1. Acronyms

Acronym Definition

TRMC Tremor Reducing Mouse Control

GRD Ground on the Arduino Uno Board

Table 2. Glossary

Term Acronym Definition

Arduino Arduino Uno

Board

Arduino is an open-source platform used for

building electronics projects. Consists of both a

physical programmable circuit board and a piece

of software.

Arduino IDE - Arduino IDE is a software application, program

languages C and C++. Allows to preform codes

IntelliJ IDEA

CE

- IntelliJ IDEA CE is a software application that

allows to perform codes.

ixClick here to enter text.

1

Introduction 1

1 Introduction

This User and Product Manual (UPM) provides individuals who experience tremors with
the necessary information to effectively use the tremor reducing mouse control and for prototype
documentation. This document assumes that the users have basic computer literacy and familiarity
with using a computer mouse.

This document is composed of information regarding the proper use of the tremor reducing

thumb joystick mouse control. It also consists of all the necessary steps to be taken should when
any of the components of the system does not behave as predicted as well as the steps taken to
fully create the system. The purpose of this document is to provide individuals with an overview
of the tremor reducing mouse control and its functionalities. It is intended for individuals who
experience tremors and are seeking a solution to improve their computer use. It will explain the
process of its software system, electrical system, and mechanical system. A step-by-step guide to
how all the different concepts were applied to create the tremor reducing mouse control system.
The document will also cover how the software system can be customized to meet individual user
needs.

The document will also go over the key aspects that make the tremor reducing mouse

control accessible, inexpensive, and sustainable. It will provide individuals with a detailed
description regarding the purpose of each different subcomponent of the system. It will also go
over the different tests that were done on the system to ensure high performance of each
component of the system.

This document also safeguards any personal information about the individual and protects

their user identity. The document also abides by any laws regarding the security and privacy of
users. It is also important to empathize that all troubleshooting activities described in this
document are completely safe for the user to carry out. However, in case of an extraordinary
malfunction, it is highly recommended to contact the provider to ensure the safety of the user.
Confidentiality is always maintained during any interaction between the user and the provider.

2

Overview 2

2 Overview

At the beginning of the semester, our client expressed the need to design an accessible,
inexpensive, sustainable and efficient tremor reducing mouse control. The client expressed a
variety of needs, the most prominent ones were for the TRMC to be:

→ Easy mouse operation with high precision of smooth movement and clicking feature.

→ Have a toggle click software function.

→ The cost of the project must be inexpensive with a cap of approximately 100$.

→ Durable with resistance to wear and tear and comfortable for extended periods of use.

It is important to solve this problem because the utilization of a computer mouse can pose a
significant challenge for individuals with disabilities, particularly those who experience tremors.
This impediment hinders an individual’s capacity to control and operate the mouse with precision,
thereby compromising their quality of life by restricting their ability to work, communicate, and
socialize with others via the internet. The current solution to this problem is our prototype. To
create a thumb joystick technology computer mouse device that interprets a code that incorporates
features such as automatic steadying, adjustable sensitivity, and adaptive filtering to improve
accuracy and ease of use for individuals with tremors. Our prototype is preeminent because it is
developed with a software code that has the capability of filtering features that can be
implemented on the thumb joystick mouse device. Offering users, the ability to fine-tune the
thumb joystick mouse movement to meet their specific needs and preferences. This strategy
proves to be effective due to the reality that individuals who experience tremor have different
backgrounds. Furthermore, the prototype also consists of electrical components that are connected
with the thumb joystick and Arduino Borad that allows the software aspect to be properly read.
Finally, the prototype also consists of a 3D printed case, where the thumb joystick and electrical
wires will be secured and ensure the safety of the user.

3

Overview 3

Figure 1: Final Prototype

4

Overview 4

Figure 2: Final Prototype with all components together

The final prototype consists of 1 thumb joystick, 1 Arduino Uno board and 1 USB Type A to USB
Type B Cable – 3ft. As well as it consists of 5 electrical female-male wires that make the
connection between the Arduino Uno board and the thumb joystick. Figure 3 demonstrates the
connections that were implemented with the help of Thinkercad. Also, a computer device that the
user wishes to use is necessary. To have the thumb joystick functioning, the connection of the
USB cable to the computer device is required. Additionally, we have created a code program with
the help of Arduino IDE and IntelliJ IDEA CE that allows the movement of the thumb joystick. 2
different codes are required that will be provided to the user. One code is for the Arduino IDE and
the other is for IntelliJ IDEA CE. Furthermore, 3 different files are also required to download and
upload on IntelliJ IDEA CE. 2 different libraries and 1 SDK file. To better understand, we have
provided a flowchart Figure 4 that demonstrates how the software process of our code is intended
to work.

Figure 3: Electrical connections

5

Overview 5

Figure 4: Flowchart

2.1 Conventions

In this document when the user is required to take action in order to complete a task it is
indicated by a line beginning with the word ‘Action’.

2.2 Cautions & Warnings

When connecting the electrical wires to the Arduino Uno board ensure all connections are
properly placed and secured in their corresponding label. This will ensure the wires do not fall out
of place and allow the connections between the thumb joystick and Arduino Uno board to be
properly read. Also, for users that are using a Windows operating computer device when plugging
in the USB cable that is connected to the Arduino Uno board to the computer device be aware of
the port information. The port information is found on Arduino IDE --> tools --> port, as Shown in

6

Overview 6

Figure 5. If the port information from the Arduino IDE does not match the port information on the
IntelliJ IDEA CE code, necessary changes will be required.

→ ACTION: User change port information on the IntelliJ IDEA CE code. Line 20 as
shown in Figure 6.

Figure 5: Finding port information on Arduino IDE

7

Overview 7

Figure 6: LINE 20 from the IntelliJ IDEA CE code

Another important aspect to note is that the code of IntelliJ IDEA CE presented in this
document may not be consistent and may require troubleshooting the system at times. However, not
to worry, as this document will provide a step-by-step guide to mitigate any potential issues that
may arise.

8

Getting started 8

3 Getting started

ACTION

STEP 1

→ Download Arduino IDE and IntelliJ IDEA CE

Figure 7: Arduino IDE and IntelliJ IDEA CE Applications

https://www.arduino.cc/en/software

https://www.jetbrains.com/idea/download/#section=mac

STEP 2

https://www.arduino.cc/en/software
https://www.jetbrains.com/idea/download/#section=mac

9

Getting started 9

→ Connect the 5 electrical wires to that are attached to the thumb joystick to the
Arduino Uno board as shown in Figure 8

▪ White wire = 7
▪ Blue wire = A0

▪ Gray wire = A1
▪ Orange wire = GRD

▪ Black & white wire = 5V

Figure 8: Electrical connections to the Arduino Uno Board

STEP 3

10

Getting started 10

→ Properly identify Type A and Type B USB, as shown in Figure 9.

→ Connect Type B to the Arduino Uno board as shown in Figure 10.

→ Connect Type A to your computer device, Figure 11.

→ A green, red and yellow light should appear on the Arduino Uno Borad.
Indicating that it is ON and that it has been properly connected. Figure 12.

Figure 9: Type A, Type B USB

11

Getting started 11

Figure 10: Type B USB connection to the Arduino Uno Board

12

Getting started 12

Figure 11: Type A connection to computer device

13

Getting started 13

Figure 12: Arduino Uno Light meaning it is ON

STEP 4

→ Open Arduino IDE on your computer device and click on New Sketch as shown
in Figure 13.

→ If New Sketch does not appear on your screen, click on the file icon on the left
side as shown in Figure 14. Then click on New Sketch.

14

Getting started 14

Figure 13: New Sketch creation

Figure 14: File icon to create a New Sketch if New Sketch does not appear from the start

15

Getting started 15

STEP 5

ENSURING ARDUINO UNO IS PROPERLY CONNCTED TO COMPUTER
 DEVICE

→ Ensure the Board information is correct, Figure 15.

 Click Tool --> Board:-->Arduino AVR Boards--> Arduino Uno

→ Ensure the port information has been properly connected. At the bottom right
side of the Arduino IDE Tab, you will find the port information, as shown in

Figure 16.

→ Figure 17 demonstrates if the connection has not been properly made. You can
disconnect and connect again the Type A USB to your computer device.

→ Then go to Tool ---> Port --> and click the USB connection that corresponds to
your computer device, as shown in Figure 18.

▪ Note: For users that are using a windows operating device, port device
will say COM, Figure 19.

16

Getting started 16

Figure 15: Board information

Figure 16: Port information – connected properly

17

Getting started 17

Figure 17: Port information – not connected

Figure 18: Manually selecting port information

18

Getting started 18

Figure 19: Windows operating system, COM port information

SETTING UP THE SOFTWARE

STEP 6

→ Copy and upload the Joystick Program code to the Arduino IDE in the blank
space provided as shown in Figure 20. If any text appeared when creating a
New Sketch, simply delete.

→ Figure 21 is what your screen should like it.

Joystick Program code

int pushPin = 7; // potentiometer wiper (middle terminal) connected to analog pin 3
int xPin = 0;
int yPin = 1;
int xMove = 0;
int yMove = 0;
 // outside leads to ground and +5V
int valPush = HIGH; // variable to store the value read
int valX = 0;
int valY = 0;
void setup()
{
 pinMode(pushPin,INPUT);
 Serial.begin(9600); // setup serial
 digitalWrite(pushPin,HIGH);
}

19

Getting started 19

void loop()
{
 valX = analogRead(xPin); // read the x input pin
 valY = analogRead(yPin); // read the y input pin
 valPush = digitalRead(pushPin); // read the push button input pin

 Serial.println(String(valX) + " " + String(valY) + " " + valPush); //output to Java program
}

Figure 20: Pasting Code in the blank space

20

Getting started 20

Figure 21: Uploaded the Joystick Program code to the Arduino IDE

STEP 7

→ Download the 2 mainfiles required JNA and RXTX. Links are provided below:

♦ jna-3.2.7-sources.zip\

♦ mfz-rxtx-2.2-20081207-win-x86.zip

→ Figure 22 is how the files should appear in your downloads file folder on your
computer device.

https://content.instructables.com/FBM/0AAR/ILV8B90P/FBM0AARILV8B90P.zip
https://content.instructables.com/FOH/WRQM/ILV8B96I/FOHWRQMILV8B96I.zip

21

Getting started 21

 Figure 22: The 2 main files required to download

STEP 8

→ Download the Java SE Development Kit 8u251 by using the link below. Click the
download button that corresponds to the device operating system that the user is
using (MacOS, Windows, etc.), as shown in Figure 23.

Note: It is required to create an oracle account to be able to download
 the file.

▪ https://www.oracle.com/ca-en/java/technologies/javase/javase8u211-
later-archive-downloads.html

https://www.oracle.com/ca-en/java/technologies/javase/javase8u211-later-archive-downloads.html
https://www.oracle.com/ca-en/java/technologies/javase/javase8u211-later-archive-downloads.html

22

Getting started 22

Figure 23: Java SE Development Kit 8u251 File

STEP 9

→ Open IntelliJ IDEA CE on your computer device and create a new project.

Go to file --> new --> project, as shown in Figure 24.

→ Figure 25 is the tab that will show up when creating a new project. Name your file.

23

Getting started 23

Figure 24: Creating new project on IntelliJ IDEA CE

24

Getting started 24

Figure 25: New project Tab

STEP 10

→ Now you will add the Java SE Development Kit 8u251 by clicking on the JDK
section and (Add JDK), as shown in Figure 26.

→ It will bring you to your own downloaded files folder on your computer, find the
Java SE Development Kit 8u25. Once you have found the file, click on it once and
then click the open button, as shown in Figure 27.

→ You will click the JDK button again and select the file (1.8 Oracle OpenJDK version
1.8.0_251), as shown in Figure 28.

→ Now you will create the project by clicking on Create, as shown in Figure 29.

25

Getting started 25

Figure 26: Adding JDK file

Figure 27: Finding the Java SE Development Kit 8u251 File

26

Getting started 26

Figure 28: Selecting the 1.8 Oracle OpenJDK version 1.8.0_251 File

27

Getting started 27

Figure 29: Creating New Project

STEP 11

→ Add the 2 libraries that were downloaded from step 7 to the new project you
have creating from step 9&10.

→ Go to Files --> Project Structure as shown in Figure 30.

→ Go to the Libraries tab as shown in Figure 31.

→ Click on the (+) icon and then click on Java to add your 2 library files, as shown
in Figure 32.

28

Getting started 28

Figure 30: Project Structure Tab

29

Getting started 29

Figure 31: Libraries Tab

30

Getting started 30

Figure 32: Getting setup to add the 2 libraries

STEP 12

→ After clicking on the Java icon that was shown in step 11, Figure 32. Your
download files document folder on your computer will pop up.

→ Find the files that were downloaded from step 7, as shown in Figure 33.

31

Getting started 31

Figure 33: Finding the 2 library files in your download files folder

STEP 13

→ First select the jna-3.2.7-sources 2 jar and click on the open button, as shown in
Figure 34.

→ A Choose Modules Tab will appear simply click on OK. (Figure 35)

→ Figure 36 is what the Project Structure Tab should look like.

32

Getting started 32

Figure 34: Selecting the jna-3.2.7-sources 2 jar file

33

Getting started 33

Figure 35: Adding the jna-3.2.7-sources 2 jar file

34

Getting started 34

Figure 36: The jna-3.2.7-sources 2 jar file has been added

STEP 14

→ Now the user will add the RXTXcomm.jar file

→ Repeat Step 11, Figure 32 and Step 12

▪ Click (+) icon --> Java ---> Find the files the user downloaded from step
7, as shown in Figure 37.

→ Double click the file mfz-rxtx-2.2-20081207-win-x86, Figure 38.

→ Figure 39 is the new tab that will appear, click the RXTXcomm.jar file and click
open.

→ Figure 40, shows a Choose Modules Tab that will appear, simply click OK.

35

Getting started 35

→ Figure 41 is what your Project Structure Tab should look like with the 2 main
libraries added.

Figure 37: Finding the mfz-rxtx-2.2-20081207-win-x86 file

36

Getting started 36

Figure 38: Double click the mfz-rxtx-2.2-20081207-win-x86 file

Figure 39: Adding the RXTXcomm.jar file

37

Getting started 37

Figure 40: The Choose Modules Tab

38

Getting started 38

Figure 41: Updated Project Structure tab with the 2 main libraries added

STEP 15

→ Make sure the user is on the RXTXcomm Tab and click on the first (+) icon
that is slightly to the right, as shown in Figure 42.

→ Double click the file mfz-rxtx-2.2-20081207-win-x86, as shown in Figure 43.

→ Figure 44 is the new tab that will appear, click the rxtxSerial.dll file and click
open.

→ Figure 45 is what your fully updated Project Structure Tab should look like
with the 2 main libraries added and the 1 Native Library Location.

39

Getting started 39

Figure 42: The RXTXcomm Tab

40

Getting started 40

Figure 43: Double click the mfz-rxtx-2.2-20081207-win-x86 file

Figure 44: Adding the rxtxSerial.dll file

41

Getting started 41

Figure 45: Fully updated Project Structure Tab

STEP 16

→ Now that everything is set up, press OK, as shown in figure 46

42

Getting started 42

Figure 46: Adding the entire Project Structure

STEP 17

→ Copy and upload the JAVA code program on IntelliJ IDEA CE in the blank space,
as shown in Figure 47:

→ Figure 48 is what your screen should look like with the code added.

JAVA CODE

43

Getting started 43

import java.awt.*;
import java.awt.event.InputEvent;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.OutputStream;
import gnu.io.CommPortIdentifier;
import gnu.io.SerialPort;
import gnu.io.SerialPortEvent;
import gnu.io.SerialPortEventListener;
import java.util.Enumeration;

public class Mouse implements SerialPortEventListener {
 SerialPort serialPort;
 /** The port we're normally going to use. */
 private static final String PORT_NAMES[] = {
 "/dev/tty.usbserial-A9007UX1", // Mac OS X
 "/dev/ttyACM0", // Raspberry Pi
 "/dev/ttyUSB0", // Linux
 "COM4", // Windows**********(I changed)
 };
 /**
 * A BufferedReader which will be fed by a InputStreamReader
 * converting the bytes into characters
 * making the displayed results codepage independent
 */
 private BufferedReader input;
 /** The output stream to the port */
 private OutputStream output;
 /** Milliseconds to block while waiting for port open */
 private static final int TIME_OUT = 2000;
 /** Default bits per second for COM port. */
 private static final int DATA_RATE = 9600;

 int buttonOld = 1;

 public void initialize() {
 // the next line is for Raspberry Pi and
 // gets us into the while loop and was suggested here was suggested
http://www.raspberrypi.org/phpBB3/viewtopic.php?f...
 //System.setProperty("gnu.io.rxtx.SerialPorts", "/dev/ttyACM0"); I got rid of this
 CommPortIdentifier portId = null;
 Enumeration portEnum = CommPortIdentifier.getPortIdentifiers();
 //First, Find an instance of serial port as set in PORT_NAMES.
 while (portEnum.hasMoreElements()) {
 CommPortIdentifier currPortId = (CommPortIdentifier) portEnum.nextElement();
 for (String portName : PORT_NAMES) {
 if (currPortId.getName().equals(portName)) {
 portId = currPortId;

http://www.raspberrypi.org/phpBB3/viewtopic.php?f=81&t=32186
http://www.raspberrypi.org/phpBB3/viewtopic.php?f=81&t=32186

44

Getting started 44

 break;
 }
 }
 }
 if (portId == null) {
 System.out.println("Could not find COM port.");
 return;
 }
 try {
 // open serial port, and use class name for the appName.
 serialPort = (SerialPort) portId.open(this.getClass().getName(),
 TIME_OUT);
 // set port parameters
 serialPort.setSerialPortParams(DATA_RATE,
 SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1,
 SerialPort.PARITY_NONE);
 // open the streams
 input = new BufferedReader(new InputStreamReader(serialPort.getInputStream()));
 output = serialPort.getOutputStream();
 // add event listeners
 serialPort.addEventListener(this);
 serialPort.notifyOnDataAvailable(true);
 } catch (Exception e) {
 System.err.println(e.toString());
 }
 }
 /**
 * This should be called when you stop using the port.
 * This will prevent port locking on platforms like Linux.
 */
 public synchronized void close() {
 if (serialPort != null) {
 serialPort.removeEventListener();
 serialPort.close();
 }
 }
 /**
 * Handle an event on the serial port. Read the data and print it. In this case, it calls the mouseMove method.
 */
 public synchronized void serialEvent(SerialPortEvent oEvent) {
 if (oEvent.getEventType() == SerialPortEvent.DATA_AVAILABLE) {
 try {
 String inputLine=input.readLine();
 mouseMove(inputLine);
 System.out.println("********************");
 //System.out.println(inputLine);
 } catch (Exception e) {
 System.err.println(e.toString());
 }

45

Getting started 45

 }
 // Ignore all the other eventTypes, but you should consider the other ones.
 }
public static void main(String[] args) throws Exception {
 Mouse main = new Mouse();
 main.initialize();
 Thread t=new Thread() {
 public void run() {
 //the following line will keep this app alive for 1000 seconds,
 //waiting for events to occur and responding to them (printing incoming messages to console).
 try {Thread.sleep(1000000);} catch (InterruptedException ie) {}
 }
 };
 t.start();
 System.out.println("Started");
 }

 // My method mouseMove, takes in a string containing the three data points and operates the mouse in turn
 public void mouseMove(String data) throws AWTException
 {
 int index1 = data.indexOf(" ", 0);
 int index2 = data.indexOf(" ", index1+1);
 int yCord = Integer.valueOf(data.substring(0, index1));
 int xCord = Integer.valueOf(data.substring(index1 + 1 , index2));
 int button = Integer.valueOf(data.substring(index2 + 1));
 Robot robot = new Robot();

 int mouseY = MouseInfo.getPointerInfo().getLocation().y;
 int mouseX = MouseInfo.getPointerInfo().getLocation().x;

 if (button == 0)
 {
 if (buttonOld == 1)
 {
 robot.mousePress(InputEvent.BUTTON1_DOWN_MASK);
 robot.delay(10);
 }
 }
 else
 {
 if (buttonOld == 0)
 robot.mouseRelease(InputEvent.BUTTON1_DOWN_MASK);
 }

 if (Math.abs(xCord - 500) > 5)
 mouseX = mouseX + (int)((500 - xCord) * 0.02);
 if (Math.abs(yCord - 500) > 5)
 mouseY = mouseY - (int)((500 - yCord) * 0.02);

46

Getting started 46

 robot.mouseMove(mouseX, mouseY);

 buttonOld = button;
 System.out.println(xCord + ":" + yCord + ":" + button + ":" + mouseX + ":" + mouseY);
 return;
 }
}

Figure 47: Pasting the code in the blank space

47

Getting started 47

Figure 48: Uploaded the Java Code on IntelliJ IDEA CE

RUNNING THE CODES

STEP 18

→ Go back to the Arduino IDE tab that was created following steps 4,5 and 6.

→ Verify by clicking on the checkmark icon. It is found on the top left corner of
the Arduino IDE tab, as shown in figure 49.

→ A Done Compiling message should appear, figure 50.

→ Then click on the → icon to upload the code onto the Arduino Uno board, as

shown in Figure 51.

→ A Done Uploading message should appear, Figure 52.

48

Getting started 48

 Figure 49: Verifying the Arduino Code

Figure 50: Done compiling message

49

Getting started 49

Figure 51: Uploading the Code onto the Arduino Uno board

Figure 52: Done uploading message

STEP 19

→ Now go back to the IntelliJ IDEA CE project tab.

→ Click on the build Projct Icon. Found at the top right corner, as shown in Figure
53.

→ To be aware if an error message appears click on the Build icon at the bottom
left of the Tab, Figure 54.

50

Getting started 50

→ If there is a message that says something similar to Class Mouse is public,
should be declared in a file name Mouse.java. You are required to go to line 13
and make sure it says public class Main implemeents SerialPortEventListener,
as shown in Figure 55.

→ Then Run the program by clicking on the play button. Found at the top right
corner, as shown in Figure 56.

Figure 53: Building the IntelliJ IDEA CE project

Figure 54: Checking for errors

51

Getting started 51

Figure 55: Ensuring line 13 is correct

Figure 56: Running the code

STEP 20

→ You can now move the thumb joystick acting as a computer mouse.

52

Getting started 52

3.1 Configuration Considerations

Physical prototype:

The only equipment needed for this system is a computer device to connect the electrical
 system. The product will come with the Thumb joystick connected with the 5 electrical
wires, all together in the mouse device case. As shown in Figure 57. It will also come with an
Arduino Uno board and a Type A- Type B USB cable, as shown in figure 58.

Figure 57: Thumb Joystick Device

53

Getting started 53

c

Software prototype:

The prototype requires the Arduino IDE and IntelliJ IDEA CE applications to be installed on
your laptop. All necessary codes and files that are also required to download/upload on your laptop
are presented in this user manual. A detailed step by step instruction is explained. Once all of the
software components are properly installed the user will be able to execute and start using the
system.

Moreover, 2 main codes are needed to make the thumb joystick act as a computer mouse. One
for the Arduino IDE and the other for the IntelliJ IDEA CE java program. 2 codes are required
because the Arduino Uno language functions do not have the capability of a mouse library that
allows devices such as a thumb joystick to act as a computer mouse. That being said, the Joystick
Program Code needs to be uploaded onto the Arduino IDE. The code will be sent to the Arduino

54

Getting started 54

Uno board which with the help of the IntelliJ IDEA CE Java code program, it has the ability to
receive and process the serial output values from the Arduino Uno board. Together, this allows the
thumb joystick to act as a computer mouse.

3.2 User Access Consideration

This system is designed for individuals who experience tremors and are seeking a solution
to improve their computer use. In terms of restrictions on accessibility or use, the main consideration
would be the intensity of the user's tremors. It is very important to note that individuals who
experience tremor have different backgrounds.

3.3 Accessing/setting up the System

Physical prototype:

The physical prototype procedures that are required from the user is to have the 5
electrical wires properly connected to the Arduino Uno board. Ensuring each wire is in its
proper placing as shown in 3.Getting Started, Step 2, Figure 3. As well as properly identifying

and connecting the TYPE A –TYPE B USB Cable.

Software prototype:

For the software components the procedures the user must complete are having the Arduino
IDE and IntelliJ IDEA CE applications installed correctly on their device in order to run the
program. Also, properly downloading and uploading all required files (RXTX and JNA) and codes
(Joystick Program and Java). Once everything has been installed, the user will be able to move the
thumb joystick in which it will act as a computer mouse. Allowing the user to move the cursor and
open and close online tabs.

3.4 System Organization & Navigation

The key features of this system are the software and electrical system.

PHYSICAL PROTOTYPE

55

Getting started 55

Electrical system

3.4.1- 5 wire connections to the Arduino Uno Board

♦ Main components:

• Thumb joystick attached with the 5 wires all together in the case.

• Arduino Uno board

Figure 59: Main components

56

Getting started 56

♦ The electrical system is the main component for setting up this system
because it will allow the IntelliJ IDEA CE java program to process the
serial output values from the Arduino Uno. This aspect allows the thumb
joystick to act as a computer mouse. That being said, it is very important
to properly connect the 5 wires that are attached to the thumb joystick to
the Arduino Uno Board. If not properly connected the java code will not
be read.

SOFTWARE PROTOTYPE

3.4.2- Arduino IDE

♦ Main components: The joystick program code

• The joystick program code is very important because it activates
the serial output values that the Arduino Uno board is projecting
and will be read by the java code on IntelliJ IDEA CE.

• The user needs to directly copy and paste the code on the Arduino

IDE application. First verify and then upload it, Figure 60.

Figure 60: Verifying and uploading the joystick program code

3.4.3- IntelliJ IDEA CE

57

Getting started 57

Main components:

1. 2 main libraries

i. RXTX

→ rxtxSerial.dll file
ii. JNA

2. JDK Java SE Development Kit 8u251

3. Java Code

The main components 1 and 2 work together to make the Java code run properly. It is
 important that the user installs the 2 main libraries properly (RXTX and JNA) by

downloading the files that have been provided in 3.Getting Started → Step 7. The JDK Java
SE Development Kit 8u251 is also very important because without a JDK file the project will
not be able to be created. With all the files downloaded the user can copy and paste the Java
code and run the program properly.

The Arduino IDE and IntelliJ IDEA CE work together therefore it is important for all files to be
installed properly. The Arduino IDE code allows the serial output values to be running, which

then the Java program is able to receive and process the serial output values from the Uno and
project to the thumb joystick.

3.5 Exiting the System

→ To properly exit the system, the software components need to be turned off first and
then the physical prototype can be disconnected.

Software prototype:

→ Stop running the code on IntelliJ IDEA CE by clicking the red square as shown
in Figure 61.

→ Once the user has stopped running the code, you can exit the application by
clicking the red (x) icon, top left corner, Figure 62.

58

Getting started 58

→ Now you can exit the Arduino IDE application by clicking the red (x) icon, top
left corner. Shown in Figure 63.

Figure 61: Stopping code run on IntelliJ IDEA CE

59

Getting started 59

Figure 62: Exiting IntelliJ IDEA CE application

Figure 63: Exiting Arduino IDE application

Physical prototype:

To disconnect the physical prototype, the user must disconnect the TYPE A USB that is
connected to the computer. Shown in Figure 64. As well as the 5 wires that are connected to the
Arduino Uno board. Shown in Figure 65.

60

Getting started 60

Figure 64: TYPE A disconnected from computer device

61

Getting started 61

Figure 65: The 5 wires disconnected from the Arduino Uno Board

62

Using the System 62

4 Using the System

Using the system has been made extremely simple. The system is built of two main features:
moving the mouse or pressing a button. When either of these functions are executed, the computer
will run the specific action.

The following sub-sections provide detailed, step-by-step instructions on using the various
functions or features of the <Mouse Movement> & <Click Function>.

4.1 <Mouse Movement>

With the mouse movement system, all the user has to do is (ACTION) push the joystick in
any desired direction to navigate pages, apps, and desktop. When the user pushes the joystick, the
Arduino code sends the data received by the serial monitor to the computer of the user, which is
then interpreted by the Java code. Once interpreted, the ava code moves the mouse pointer to the
desired spot. It is possible that if the user puts too many inputs in that the mouse may delay in
movements as it is reading all the movements input.

4.1.1 <Joystick Click>

Included with the mouse movement code, the code also includes a left click function. To
engage this function the user needs to (ACTION) press the joystick in. When this is done the code
will read the input and left click wherever the cursor is hovering over.

4.2 <Click Function>

The click functions that are added onto the base of the mouse will be respectively set as the left and
right click. The left click can be used alternatively with the click function on the joystick to

63

Using the System 63

incorporate ease of use. All the users will have to do is (ACTION) click either the left click or right
click button located on the side of the housing for the joystick. Once pressed, the arduiono sends a
signal to the java code to initiate the left click or right click function.

64

Troubleshooting & Support 64

5 Troubleshooting & Support

When using any technology, it is normal to encounter problems. When this happens, you
should consult this page. Some common errors a user will face are USB ports not picking up the
mouse being plugged in, the mouse moving too fast, and a compile error when the mouse program
is run.

5.1 Error Messages or Behaviors

A few errors messages users can receive are the following:

1. Port not found

2. GNU.IO not found

3. Compile Error

When a user faces these common errors codes, the fix is quite simple. If ever the user sees these
codes when they run the mouse, they just need to check to see that the port they have connceted
to is identified correctly in the code, if it is, all the user has to do is restart their system and plug
the mouse back into the correct USB port. As with the second error, the two things the users
needs to check is if they have downloaded all the files correctly, if so then the user just needs to
restart their system. FInally, if the user is encountering a compiler error, they will need to open
IntelliJ and hover over the file tab in the top left corner and look for the option that says rebuild
IDE.

65

Troubleshooting & Support 65

Figure 66: File -> Repair IDE function

5.2 Special Considerations

If the user finds that the mouse cursor moves too fast they can enter the Java code and change
the number value on the delay in the ports which will allow for slower movements and more of a
controlled feedback. For best feedback, the user should only input any number between 1-2000

Figure 67: TIME_OUT = <insert number 1-2000>

5.3 Maintenance

The device should be regularly checked for any cracks or break to the case since those cracks
will allow for dust and debris to mess with the function of the microcontroller place inside the
housing. The joystick must also be checked for stick drift . To do this all the user will need to do is

66

Troubleshooting & Support 66

turn the mouse on and see if it moves on it’s own. To prevent this from happeniuung the user should
not let liquids get into the joystick module.

5.4 Support

If all problems persist or users have any problem that aren’t listed in the user manual they
should contact the team at any of these email addresses:

Matthew Emmanuel: memma017@uottawa.ca
Maria Abril Vargas: mabri051@uottawa.ca
Jason Jin: zjin052@uottawa.ca

These 3 email addresses belong to the creators of the product, so if users are to run into any

problems, they can contact any of the three email addresses. The first point of contact should be
Matthew Emmanuel, if the user is unable to reach Matthew, then they may go ahead and reach out
to all Maria & Jason to ensure their email is seen. Expect replies within 1-3 business days. If any
security incidents occur, the user must outline this information in the subject line of the email,
when this is done they will be sent a form to fill out indicating what type of incidents occurred

mailto:memma017@uottawa.ca
mailto:mabri051@uottawa.ca
mailto:zjin052@uottawa.ca

67

Product Documentation 67

6 Product Documentation

6.1 Mechanical subsystem

6.1.1 BOM (Bill of Materials)

The bill of materials for the mechanical subsystem can be found at this link:

https://docs.google.com/spreadsheets/d/1FBQZK72XGXYsVN2tQepPDlvpyDClL8CTrZ
BvWe8ArQk/edit#gid=0

6.1.2 Equipment list

• PLA 3D printing plastic

• A 3D printer (along with software to 3D print)

• Onshape, or another CAD software

6.1.3 Instructions

To build the mechanical subsystem, 3D print the case as provided by the STL files here:
https://drive.google.com/drive/folders/1YQrdPED_7XFE70dDLusxKhZJQUMxy45t

Next screw the joystick to the top part of case. Then close the case.

https://docs.google.com/spreadsheets/d/1FBQZK72XGXYsVN2tQepPDlvpyDClL8CTrZBvWe8ArQk/edit#gid=0
https://docs.google.com/spreadsheets/d/1FBQZK72XGXYsVN2tQepPDlvpyDClL8CTrZBvWe8ArQk/edit#gid=0
https://drive.google.com/drive/folders/1YQrdPED_7XFE70dDLusxKhZJQUMxy45t

68

Product Documentation 68

Figure 68: Assembly view of Mechanical subsystem

6.2 Electrical subsystem

6.2.1 BOM (Bill of Materials)

The bill of materials for the Electrical subsystem can be found at this link:

https://docs.google.com/spreadsheets/d/1FBQZK72XGXYsVN2tQepPDlvpyDClL8CTrZ
BvWe8ArQk/edit#gid=331665036

https://docs.google.com/spreadsheets/d/1FBQZK72XGXYsVN2tQepPDlvpyDClL8CTrZBvWe8ArQk/edit#gid=331665036
https://docs.google.com/spreadsheets/d/1FBQZK72XGXYsVN2tQepPDlvpyDClL8CTrZBvWe8ArQk/edit#gid=331665036

69

Product Documentation 69

6.2.2 Equipment list

• Arduino UNO

• Breadboard

• Jump wire

• Soldering equipment

• Male pin header

• Joystick

6.2.3 Instructions

Solder the male pin header to the Joystick and connect the jump wires as illustrated in Figure
7.

6.3 Software subsystem

6.3.1 BOM (Bill of Materials)

The bill of materials for the Electrical subsystem can be found at this link:

https://docs.google.com/spreadsheets/d/1FBQZK72XGXYsVN2tQepPDlvpyDClL8CTrZ
BvWe8ArQk/edit#gid=329486560

6.3.2 Equipment list

• Arduino IDE

• IntelliJ IDEA

6.3.3 Instructions

Follow the steps in part 3 to set up the software part.

https://docs.google.com/spreadsheets/d/1FBQZK72XGXYsVN2tQepPDlvpyDClL8CTrZBvWe8ArQk/edit#gid=329486560
https://docs.google.com/spreadsheets/d/1FBQZK72XGXYsVN2tQepPDlvpyDClL8CTrZBvWe8ArQk/edit#gid=329486560

70

Product Documentation 70

6.4 Testing & Validation

After conducting tests, we have confirmed that the mouse moving and simple clicking
functions in our prototype are working. However, we have observed a delay time of 3-5 seconds.
There is two video link attached below.

Simple click function:

https://drive.google.com/file/d/12wNzSgj6qn4Bi7MTiUalGNFvj2r3Ktpo/view?usp=shari
ng

Mouse moving function:

https://drive.google.com/file/d/1j--
4DWg8pld6VfWJJOmoymzddgshNI4J/view?usp=share_link

https://drive.google.com/file/d/12wNzSgj6qn4Bi7MTiUalGNFvj2r3Ktpo/view?usp=sharing
https://drive.google.com/file/d/12wNzSgj6qn4Bi7MTiUalGNFvj2r3Ktpo/view?usp=sharing
https://drive.google.com/file/d/1j--4DWg8pld6VfWJJOmoymzddgshNI4J/view?usp=share_link
https://drive.google.com/file/d/1j--4DWg8pld6VfWJJOmoymzddgshNI4J/view?usp=share_link

71

Conclusions and Recommendations for Future Work 71

7 Conclusions and Recommendations for Future Work

The prototype was supposed to have the feature of toggle click function and left click right
click function, but for the limited time we have, we only got the mouse moving function and
simple clicking function.

Replacing the 3D printed parts with plastic components. This could potentially result in a
stronger and more durable casing for our prototype, it will also simplify the manufacturing
process.

Due to the lack of time and lack of prediction, the Arduino board is not fitting into the case
we made when assembling the final prototype. Possible solutions could include either constructing
a larger case or considering a smaller board, such as the Arduino Nano, as an alternative.

For our final prototype, we used an Arduino Uno board to transmit data over USB, which
was subsequently received and processed by Java code on a computer. However, the response
time of the program was measured to be approximately 3-5 seconds, which may adversely impact
the user experience due to the prolonged delay. With the lack of knowledge of programming, we
were unable to fix that. We have attempted to optimize the code for our prototype, but
unfortunately, it did not yield any noticeable improvement in the response time. There are some
other suggestions we haven't tried. Use Serial Buffering: Arduino Uno board uses serial
communication for data transmission over USB. Try enabling hardware or software serial
buffering on the Arduino Uno board to increase the data transmission speed. Hardware or
software serial buffering allows for the accumulation of multiple bytes of data before transmitting
them as a batch, which can reduce the overall transmission time. Use a Different Board: Arduino
Uno is a popular microcontroller board, but it may not always be the best choice for high-speed
data transmission. Choose a board with high-speed data transmission, such as Arduino Due, or
switch to a different microcontroller platform that supports faster data transmission.

72

Bibliography 72

8 Bibliography

→ jna-3.2.7-sources.zip\

→ mfz-rxtx-2.2-20081207-win-x86.zip

→ “Arduino software.” Arduino, https://www.arduino.cc/en/software. Accessed 7 April 2023.

→ “Download IntelliJ IDEA: The Capable & Ergonomic Java IDE by JetBrains.” JetBrains,

https://www.jetbrains.com/idea/download/#section=mac. Accessed 7 April 2023.

→ “Java Archive Downloads - Java SE 8u211 and later.” Oracle, https://www.oracle.com/ca-

en/java/technologies/javase/javase8u211-later-archive-downloads.html. Accessed 7 April

2023.

→ “Arduino - Joystick | Arduino Tutorial.” Arduino Getting Started,

https://arduinogetstarted.com/tutorials/arduino-joystick. Accessed 16 February 2023.

→

https://content.instructables.com/FBM/0AAR/ILV8B90P/FBM0AARILV8B90P.zip
https://content.instructables.com/FOH/WRQM/ILV8B96I/FOHWRQMILV8B96I.zip
https://www.arduino.cc/en/software
https://www.jetbrains.com/idea/download/#section=mac
https://www.oracle.com/ca-en/java/technologies/javase/javase8u211-later-archive-downloads.html
https://www.oracle.com/ca-en/java/technologies/javase/javase8u211-later-archive-downloads.html
https://arduinogetstarted.com/tutorials/arduino-joystick

73

APPENDIX I: Design Files 73

APPENDICES

9 APPENDIX I: Design Files
Table 3. Referenced Documents

Document Name Document Location and/or URL Issuance Date

Maker Repo LINK 04/7/2023

3D Design STL

files

LINK 04/7/2023

Joystick Program

code

LINK 04/7/2023

Java Code LINK 04/7/2023

Libraries and JDK

8u251 files

LINK 04/7/2023

Finalized Design LINK 04/7/2023

https://makerepo.com/MatthewEmmanuel14/1504.c13-mousemaneuvers-
https://drive.google.com/drive/folders/1YQrdPED_7XFE70dDLusxKhZJQUMxy45t
https://docs.google.com/document/d/1h1aV3SnMtVuwF8YfIR6qpuotE3-gThA-RRiMlw7eg2Y/edit?usp=sharing
https://docs.google.com/document/d/1IUDsUp8sGkInMsavVtiRosqsKPPdwYnTkFOTi4sfrGE/edit?usp=sharing
https://docs.google.com/document/d/1HYNEFkA9LxA11E6aTya55ZfemKoMP_YDWqORke5j480/edit?usp=sharing
https://docs.google.com/document/d/172n6JgNoCZi15H5Ud9VERMNQ1x6QIBEUEEbRS7leg_U/edit?usp=sharing

74

APPENDIX II: Other Appendices 74

10 APPENDIX II: Other Appendices

Prototype 1 and prototype 2 are other documents that guided us with the creation of the final

design.

PROTOTYPE 1- 3D MODELS

→ For prototype 1 the team created 3 different 3D models which them allowed us to

create a conceptual design. The conceptual design incorporates valuable feedback from

our client, which includes a mouse base with two buttons and a detachable joystick

feature. The goal of this innovative design is to be able to seamlessly switch between the

handle and thumb joystick, providing users with optimal comfort and flexibility.

75

APPENDIX II: Other Appendices 75

Figure 69: 3 different 3D Models

76

APPENDIX II: Other Appendices 76

Figure 70: Conceptual Design

PROTOTYPE 2 - Analog Read of the joystick

→ The purpose and function of the analog read joystick prototype is to test and verify the design
of a joystick. It will intake a code and report a range of values that depict a location on a digital
screen.

→ The electrical system was followed by the following link: “Arduino - Joystick | Arduino Tutorial.”
Arduino Getting Started, https://arduinogetstarted.com/tutorials/arduino-joystick. Accessed 16 February 2023.
Figure 71 shown the electrical connections that were made, and Figure 72 shows the code that
was used.

→ The code was read successfully and provided us with coordinates of the X and Y axis of
the joystick. Together, the X and Y coordinates can be used to determine the direction
and magnitude of the joystick's movement. Figure 73.

https://arduinogetstarted.com/tutorials/arduino-joystick

77

APPENDIX II: Other Appendices 77

Figure 71: Analog Read of the joystick electrical connections

78

APPENDIX II: Other Appendices 78

Figure 72: Analog Read of the joystick code

79

APPENDIX II: Other Appendices 79

Figure 73: The coordinates of the X and Y axis of the joystick.

	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms and Glossary
	1 Introduction
	2 Overview
	2.1 Conventions
	2.2 Cautions & Warnings

	3 Getting started
	3.1 Configuration Considerations
	3.2 User Access Consideration
	3.3 Accessing/setting up the System
	3.4 System Organization & Navigation
	3.5 Exiting the System

	4 Using the System
	4.1 <Mouse Movement>
	4.1.1 <Joystick Click>

	5 Troubleshooting & Support
	5.1 Error Messages or Behaviors
	5.2 Special Considerations
	5.3 Maintenance
	5.4 Support

	6 Product Documentation
	6.1 Mechanical subsystem
	6.1.1 BOM (Bill of Materials)
	6.1.2 Equipment list
	6.1.3 Instructions

	6.2 Electrical subsystem
	6.2.1 BOM (Bill of Materials)
	6.2.2 Equipment list
	6.2.3 Instructions

	6.3 Software subsystem
	6.3.1 BOM (Bill of Materials)
	6.3.2 Equipment list
	6.3.3 Instructions

	6.4 Testing & Validation

	7 Conclusions and Recommendations for Future Work
	8 Bibliography
	APPENDICES
	9 APPENDIX I: Design Files
	10 APPENDIX II: Other Appendices

