Rapport d'ingénierie de : Ouattara Yanis Nadia Myriam Zorom Kazungu Kelly Dalek Marc -Antoine Seguin Mamadou Racine Sy Mahmoud Qayem

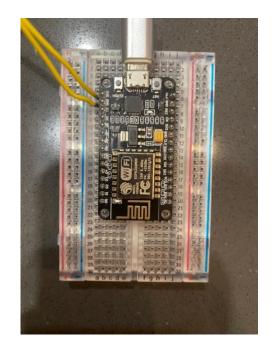
Livrable F: Calendrier et coût du projet

Groupe FE34

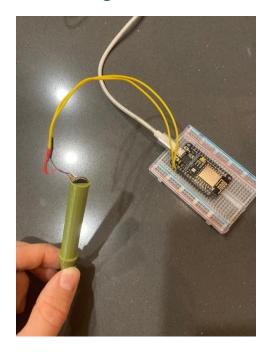
Présenté à :

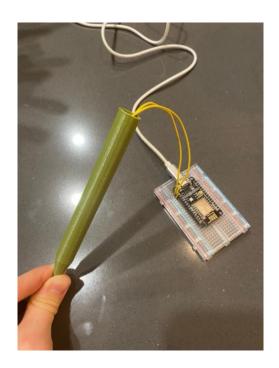
Prof. Emmanuel Bouendeu Le 25 février 2024

Rétroaction du client suite à la rencontre #2


Rétroaction du client: Pour intégrer le retour d'information du client dans les choix de conception futurs et améliorer la solution, on devrait :

- Ajuster le mécanisme de vibration pour qu'il corresponde de plus près aux fréquences naturelles associées à une pollinisation réussie.
- Améliorer la précision de découpe des matériaux pour garantir un assemblage parfait des composants, ce qui améliorera l'intégrité structurelle et la fonctionnalité du prototype.
- Affiner la programmation des composants électroniques pour s'assurer qu'ils répondent aux exigences opérationnelles spécifiées, y compris la réactivité et la précision en temps réel.


Pour une analyse et une intégration détaillée du retour d'information du client, chaque point doit être minutieusement examiné et pris en compte dans le processus de conception. Il est essentiel d'établir des métriques claires pour mesurer les améliorations, telles que les plages de fréquences de vibration et les niveaux de tolérance pour les découpes de matériaux, et de mettre en place des tests itératifs pour valider ces améliorations par rapport aux attentes du client.


Prototype I Composantes principales

Assemblage

Plan d'essai de prototypage I

Prototype	Critère fonctionnel	Valeur mesurée	Valeur ciblée	Observation/commentaire
'	fréquence de vibration	≈166.67 Hz	100< x <400 Hz	La fréquence de vibration doit être plus élévée
	Critère non- fonctionnel			dent ente plus eleves
	Matériel	Plastic	Aluminium	L'aluminium est le meilleur conducteur de vibration
	Contrainte			
		375 Hz		

Vibration optimale	250< x <400	Nous devons visé une		
pour la pollinisation	Hz	fréquence de vibration		
des fraises		d'environ 350-375 Hz		

Analyse du prototype I

Description du prototype et de son usage :

Le prototype a pour objectif d'assister le processus de pollinisation des fraises en fournissant des vibrations contrôlées aux fleurs. Les vibrations induites par la tige améliorent la dispersion du pollen, augmentant ainsi le rendement des cultures de fraises.

Le microcontrôleur NodeMCU permet une adaptation précise de la fréquence de vibration pour s'aligner avec les besoins spécifiques de la pollinisation des fraises.

La tige vibrante imprimée en 3D en plastique intègre le moteur vibrant pour générer des vibrations contrôlées.

Critère Fonctionnel : Fréquence de vibration

Observation:

Moteur vibrant : NFP-E1015 (10mm)Valeur mesurée : environ 166.67 Hz

• Valeur ciblée: 100 < x < 400 Hz

• Commentaire : La fréquence de vibration doit être plus élevée.

Analyse technique:

Pour augmenter la fréquence de vibration, nous aurons à augmenter la tension d'alimentation étant donné que le moteur peut être ajusté.

Critère non – fonctionnel : Fréquence de vibration

Observation:

Matériel de la tige : PlastiqueMatériel Ciblée : Aluminium

• Commentaire: L'aluminium est le meilleur conducteur de vibration.

Analyse technique:

Étant donné que le moteur NFP-E1015 résiste à l'eau, l'utilisation d'aluminium pour la tige vibrante est une option solide. L'aluminium a une conductivité mécanique supérieure, ce qui peut améliorer la transmission des vibrations.

Contrainte: Vibration Optimale pour la Pollinisation des Fraises

Observation:

• Valeur mesurée : 375 Hz

• Valeur Ciblée: 250 < x < 400 Hz

• Commentaire: Nous devons viser une fréquence de vibration d'environ 350-375 Hz.

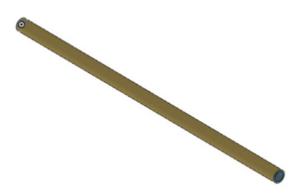
Analyse Technique:

Étant donné que la valeur mesurée est déjà dans la plage ciblée (375 Hz), cela répond aux spécifications.

Recommandations pour l'optimisation:

- Ajuster la fréquence de vibration
- Changer le matériau de la tige vibrante
- Maintenir la fréquence optimale pour qu'elle reste dans la plage ciblée.

Commentaire : La fréquence de vibration doit être plus élevée.


Mise à jour

Plan de conception détaillé

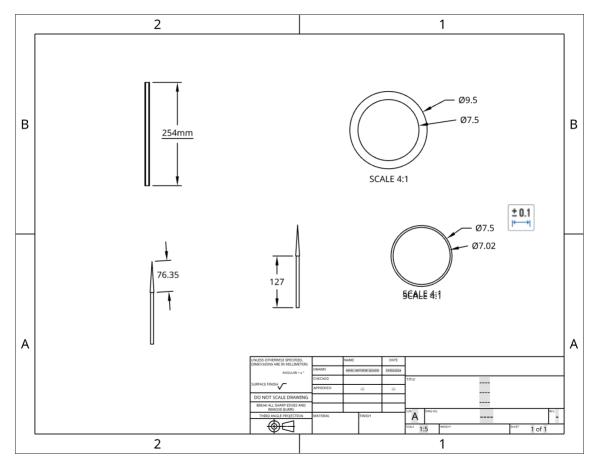
Plan mécanique

La tige:

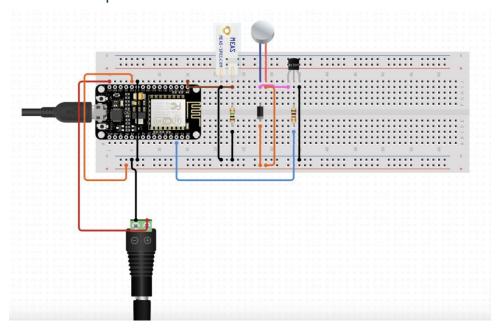
https://cad.onshape.com/documents/14133eb19339a9e9db21b9fa/w/c287495c3cad9d1 9befb2257/e/40e0dcb29747182d9287e925

Le piquet:

https://cad.onshape.com/documents/14133eb19339a9e9db21b9fa/w/c287495c3cad9d1 9befb2257/e/751e328984a5d9f2b2b7dbd9

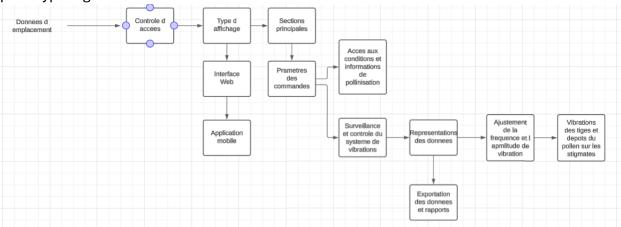

L'assemblage:

https://cad.onshape.com/documents/14133eb19339a9e9db21b9fa/w/c287495c3cad9d1 9befb2257/e/05667f0e5fee2f92cf0f1945



Le dessin:

https://cad.onshape.com/documents/14133eb19339a9e9db21b9fa/w/c287495c3cad9d1 9befb2257/e/d0a3ee20af7b688e6c05033f



Plan électrique

Plan logiciel

En se référant sur notre conception non détaillée voici la conception détaillée de notre prototype logiciel

Nomenclature des matériaux

Matériels et coûts du projet livrable F.xlsx

Plan d'essai de prototypage II

Prototypes					Tests		
N	Туре	Objectif	Fidélité	Retroact	Objectif	Résultat	Durée
				ion			
1	Ciblé	Tester le	Faible	À venir	Tester la	Résultat	2heures
	physique	fonctionn		suite à	vibration	à voir au	02/03/20
		ement de		la	:	prochai	24
		base du		rencontr	Conduct	n	
		système		e client	ion de	tableau.	
		de		3	vibration		
		vibration			,		
		et obtenir			distance		
		la			parcour		
		rétroactio			ue de le		
		n du			fréquenc		
		client			e de		
					vibration		
					,		
					fréquenc		
					e idéale		

					de vibration 250- 400Hz	
2	Ciblé électrique	Vérifier la faisabilit du système électrique	Moyenn e	A venir suite a la rencontr e client 3	Tester le système: Capacit é électriqu e, code, receptio n des données du capteur	5h