
Project Deliverable G: Prototype 2

GNG2101 [A03] – Professor Hanan Anis

Submitted by:

Team A2

Ayesha Khan, 300056179

 Alessandro Furlano, 300116738

Aunonto Bhuiya, 300115942

 Ethan Chan, 300006808

 Dieudonne Lomamba, 300095212

Due Date: 09/11/20

University of Ottawa

Table of Contents

Introduction 3

Client Meeting 3
Client Meeting Preparation and Summary 3
Client Meeting Feedback 3
Changes to Prototype 4

Prototype II 4

Hardware 4

Software 4
Server and Audio Recognition Code 4
Portable Unit Code 7
Main Unit Code 11

Project Plan 12

Introduction

Over the course of the past couple of weeks, Team 2 has been working on developing

their second iteration of their device. This second prototype implements improvements

discovered from an additional client meeting with Fran and her support staff (Justine).

Similar to the previous prototype, the group was split into a software and a hardware

team. Despite the problems with shipping due to COVID-19, the software team was able

to develop some code based on the client meeting and needs.

Client Meeting

Client Meeting Preparation and Summary

In order to prepare for their third meeting with Fran and Justine (her support staff), Team

2 attempted to complete prototype 2 prior to the meeting. However, due to shipping delays

brought on by COVID-19 they were unable to fully complete it. Instead, they presented their

model to the client and asked about any potential concerns.

Client Meeting Feedback

From their meeting Team 2 discovered that due to Fran getting a new T.V, they may need

to implement an external mic in their design to ensure that the audio received is as optimal as

possible. The team were also informed of audio samples that had been sent to them for testing

purposes. Although due to problems with shipping, they were unable to present the clients with a

working device, Team 2 received integral information for their design.

Changes to Prototype

Based on their meeting, Team 2 will now be implementing an external mic to the main

unit design. This microphone will allow the device to get clearer input from Fran, thus, making it

more effective.

Prototype II

Hardware

Due to COVID-19, Team 2 was unable to complete their second physical prototype.

Software

Server and Audio Recognition Code

import socket
from pathlib import Path
from pydub import AudioSegment

def recognize(location = 'D:/Users/Ethan Chan/AppData/Local/Google/Cloud SDK/sf_test.flac'):
 r = sr.Recognizer()
 tempsplit = location.split('.')
 if len(tempsplit)!=2:
 raise Exception("filename doesnt not follow standard 1 location, 1 file")
 local = tempsplit[0]
 filetype = tempsplit[1]
 if filetype!= 'flac':
 location = translate(local,filetype)

 with sr.AudioFile(location) as source:
 audio = r.record(source)

 res = r.recognize_google(audio, language='en-US')
 print(res)
 return res

def translate(location,ftype):
 soundfile = location.split('/')
 sf = soundfile[-1] + '.flac'
 path = Path(location + '.flac')
 if path.is_file():
 ret = location + '.flac'
 else:
 s = AudioSegment.from_file(location+”.”+ftype,ftype)
 s.export(sf,format="flac")
 ret = location + '.flac'
 return ret

def send(MESSAGE = b"Hello, World!"):
 UDP_IP = "192.168.0.160" #127.0.0.1
 UDP_PORT = 5005
 print("UDP target IP: %s" % UDP_IP)
 print("UDP target port: %s" % UDP_PORT)
 print("message: %s" % MESSAGE)

 sock = socket.socket(socket.AF_INET, # Internet
 socket.SOCK_DGRAM) # UDP
 sock.sendto(MESSAGE, (UDP_IP, UDP_PORT))

def filteraudio(audio):
 alength = len(audio)
 ret = False
 for iter in range(alength-2):
 if audio[iter] == 'h':
 word = audio[iter:(iter+2)]
 if word == 'hey':
 ret = True
 break
 elif (word == 'hel')and(iter+2!=alength):
 if audio[iter+3]=='p':
 ret = True
 break
 return ret

Shown above is the code used for the voice recognition software, along with helper functions.

Recognize: Takes a file location and returns the recognized words in english. It uses the

translation function if necessary

Translate: Takes the file location, and the files data type. If the file is not of the file type “flac”

then the file is translated into that type. The location of the new file is returned.

Send: Takes a binary message and returns nothing (OK or true will be added later). Connection

is established and the message is sent. The connection will later be split from this function for

better functionality.

Filteraudio: Takes an audio string and returns a boolean. Used to check the words recognized

with the designated words used by the client. If the word “hey” or “help” is within the string,

then true is returned.

An example of using this code would be (without using the filteraudio):

message = recognize()

bmsg = str.encode(message)

send(bmsg)

Testing of the code:

4 audio files were provided by the client: “Bedside with noise machine.m4a”, “By bedside with

TV on Vol level 15.m4a”, “By bedside.m4a”, and “By door.m4a”.

The filteraudio function was tested with these 4 files and no difference was found between the

resulting flac files compared to flac files created through website usage.

The recognize function was then used with the following results:

Bedside with noise machine go ahead and say hey

As shown above, the caretaker's voice was recognized while the client’s was not. Testing with

previously scrapped voice recognition software ended with the same result. However, listening to

the audio itself, the client’s voice was not clear enough to be heard by multiple members of the

group that tried listening to them. A request has been sent for higher quality voice recordings and

adjustments have been made to the project accordingly. At this point, it seems almost certain that

the main device will require an extendable microphone as previously discussed.

Portable Unit Code

from gpiozero import Button
from gpiozero import RGBLED
from gpiozero import LED
from time import sleep
from gpiozero import Motor

Call Connection Function
led = RGBLED(red=9, green=10, blue=11)
motor = Motor(forward=4, backward=14)
led.color = LED(18)
okBut = Button(4)
motor = Motor(17)
safecount = 0
audiocount = 0
situation1 = 0
situation2 = 0
situation3 = 0

By bedside with TV on Vol level 15 go ahead and say hey

By bedside say help

By door okay it's a help

def connection(self, mainunitconc=None):
 if (mainunitconc == True):

 # server(True):
 else:
 connectioncount = 0
 led.red.on()
 sleep(1)
 led.color = (0, 0, 0)
 sleep(1)
 connectioncount += 1

 if (connectioncount > 180):
 motor.forward()
 sleep(5)
 motor.backward()
 sleep(5)

connection()

def server():
 situation1 = False
 while situation1 == False:
 signal = False
 if (signal == True):
 motor.forward()
 sleep(5)
 motor.backward()
 sleep(5)
 led.color = (0, 1, 0)
 sleep(1)
 led.color = (0, 0, 0)
 sleep(1)
 else:
 Situation1 = False

server()

def confirm():
 situation3 == False
 while situation3 == False:
 if okBut.is_pressed:
 oksignal = str.encode("ok signal")
 # send(oksignal)
 else:
 # neglect()
 Situation3 = False

confirm()

def neglect():
 while situation2 == False:

 if (recieve is "ok signal" and "Stop Signal" == False):
 safecount = safecount + 1
 audiocount = safecount / 3
 if (safecount > 3 and audiocount < 3):
 motor.forward()
 sleep(5)
 motor.backward()
 sleep(5)

 else:
 # Playsound insert audio queue code

 elif (recieve is "ok signal" == False and "Stop Signal" == True):
 safecount = safecount + 1
 audiocount = safecount / 3
 if (safecount > 3 and audiocount < 3):
 motor.forward()
 sleep(5)
 motor.backward()

 sleep(5)

 else:
 # Playsound insert audio queue code

 elif (recieve is "ok signal" == True and "Stop Signal" == False):
 safecount = safecount + 1
 audiocount = safecount / 3
 if (safecount > 3 and audiocount < 3):
 motor.forward()
 sleep(5)
 motor.backward()
 sleep(5)

 else:
 #Playsound insert audio queue code

 elif (recieve is "ok signal" and "Stop Signal" == True):

 motor.stop()
 # turn off sound queue sound
 led.off()
 Situation2 = True

 connection()

neglect()

The code for the portable unit can be seen above. The code is able to run the motor,

LEDS, and buttons with different cases in the code. The leds and motor are able to be used in

different functions . At the moment, no sound notification has been implemented into the device.

Since in the current circumstances with regards to COVID-19, the components needed to

effectively test the code above had not arrived in time. The code is able to run without any

syntax errors in play but, without the proper components needed to test the code some errors

might be seen later on.

Main Unit Code

from gpiozero import Button
from gpiozero import LED
from gpiozero import RGBLED

hereBut = Button(17)
powerBut = Button(22)
resetBut = Button(18)

largeLED = LED(18)
largeLED.red = 1
Flag4 = False
Flag3 = False

insert code for server
insert code for audio recognition

def Confirm():
 while Flag3 == False:
 if recieve is "ok signal":
 largeLED.red.on()
 Arrived()
 else:
 Flag3 = False

def Arrived():
 while Flag4 == False:
 if hereBut.is_pressed:
 largeLED.off()
 signal = str.encode("Stop Signal")
 send(signal)
 recognize()
 else:
 Flag4 = False

The code for the 2 computational functions in the main unit can be seen above. This code

is used to assign functionality to the various buttons and LEDs in the main unit. Due to the

current circumstances with regards to COVID-19, the components needed to effectively test the

code above had not arrived in time. The code has been debugged for any syntax errors, however,

at this time the team is unable to test the code. Currently, the code is designed to work for a

button and an RGB LED that only sends a signal and indicates that a signal has been sent.

Project Plan

The project plan was updated in order to include a detailed schedule of the next two

weeks. Deliverable I was added to the project plan as it was not there before. The Hardware

tasks for prototype 2 were not completed as the components were not received in time.

Conclusion

Testing based on the audio provided by the client went poorly. However, steps have been

taken to remedy this. Despite the setbacks, the software parts tested have provided promising

results and will continue to be developed. As the team is still waiting on parts to be delivered,

hardware objectives have been slowed but progress has been made on this as well. Thus, the

project plan has been adjusted accordingly, and further testing has been planned upon other

prototype objective completions.

