
Deliverable K: User and Product Manual 1

Deliverable K: User and Product
Manual

 Deliverable K: User and Product Manual

 Engineering Design

 GNG 1103-A

 Team Members:

Hatim Shakir.

Rohit Sharma.

Nour Elali.

Farah El Siss.

Michael Abu El Farag.

 Deliverable due date: December 8, 2021.

 Professor: Dr. David Knox.

 TAs & PM: David Nku, Pankaj Rathi, & Elsa Lange.

 Faculty of Engineering

 Fall 2021

Deliverable K: User and Product Manual 2

Table of Contents
Table of Contents
List of Acronyms and Glossary
Introduction
Overview

Cautions and Warnings
Getting Started

Set-up Considerations
User Access Considerations
System Organization and Navigation
Exiting the System

What the final solution is
All Users Features

Security
Help Centre

Bank Client's Side of Product
View Total Points and Spend at Eligible Retailers
Point Management: Transfer/Donate Points
Personalized Offers on Dashboard
View Transaction/ Point Management History

Retailer's Side of Product
Manage Reward Program
Set Reward Ads
View Store Transaction History
Access to Resources

Troubleshooting and Support
Error Messages or Behaviors
Special Considerations
Maintenance
Support

Product Documentation
Needs Identification

Benchmarking
Problem

Deliverable K: User and Product Manual 3

List of Acronyms and Glossary
Table 1. Acronyms

Acronym Definition

UPM User and Product Manual

APK Android Application Package

UI/UX User Interface/User experience

ID Identity Document

API Application Programming Interface

FAQ Frequently Asked Questions

OS Operating System

Table 2. Glossary

Term Definition

Node-Red
Node-RED is a flow-based development tool for visual programming developed
originally by IBM.

MonogDB
MongoDB is a source-available cross-platform document-oriented database
program.

Figma
Figma is a vector graphics editor and prototyping tool which is primarily web-based,
with additional offline features enabled by desktop applications for macOS and
Windows.

Flutter Flutter is an open-source UI software development kit created by Google.

Design Criteria
Bill of Materials
How Our Final Solution Was Built
Prototypes

Prototype 1
Prototype 2
Prototype 3

Testing and Validation
Conclusion and Recommendations for Future Work
References
Appendices

Deliverable K: User and Product Manual 4

Term Definition

Firebase
Firebase is a platform developed by Google for creating mobile and web
applications.

Notion Notion is a piece of notetaking software and project management software.

Wrike Wrike, Inc is a project management application

LucidCharts
Lucidchart is a web-based proprietary platform that allows users to collaborate on
drawing, revising and sharing charts and diagrams.

Introduction

Our primary goal is to develop a strong and effective loyalty platform that will allow
various users (banks, clients, and retailers) to access and control their accounts while
providing genuine value. In this user and product manual, we will be providing a deeper
overview of our product and interpreting all the steps that were taken to build it.
Moreover, this User and Product Manual (UPM) provides the information necessary for
bank clients and retailers to effectively use our platform and for prototype
documentation.

Overview
There are many problems with loyalty reward programs today. Users often struggle to
use multiple rewards platforms and point systems, which have inefficient ways to save
money, as they are hard to keep up with. Smaller retailers do not have the resources
and the right management processes to start their own programs.

To democratize loyalty rewards we need to find a way to allow smaller retailers to thrive
and make that process simple for the everyday bank client. A need exists to create a
highly secure, simple, and compatible platform that can allow users to keep track of
loyalty points, and their regular banking information for usage on various different retail
stores, products, and services.

Our product fulfills the following needs. Bank clients have the ability to redeem and
store points. 2-factor authentication for extra security. With different users, there needs
to be a personalized experience on the platform. As a retailer, there should be the ability
o set your own points, ads, and have full control over the management of their loyalty

Deliverable K: User and Product Manual 5

rewards program. All users have easy navigation and browsing, as well as, be
accessible from multiple devices.

Our platform is integrated with existing bank infrastructure, so it is already accessible to
all users with certain banks that partner with Zaffin to use this product.

We are different from platforms today as we give the power pack to all retailers no
matter their size. Allowing all retailers set their own loyalty rewards program by setting
their own point per dollar and attract their customers by setting ads with target
audiences. This platform gives them the resources to do so.

The everyday bank client has access to personalized offers depending on their
purchasing history, as well as a dashboard with all the eligible retailers they can spend
their points at. They can spend specific amount of points at specific retailers.

The platform's UI is built on Figma and functionality using MongoDB and NodeRED.

This product truly democratizes loyalty rewards by allowing retailers to have full control
over their program and providing them with resources to do well. Bank clients can view
all their rewards from one place, and are able to have full control over how they spend/
transfer their points.

All parties, such as bank clients, banks, and retailers, make or save money.

Cautions and Warnings
Although our platform is secure and requires a two-factor authentication system, we still
ask users to not include personal information such as personal ID numbers, vehicle ID,
etc..

Getting Started
In order to understand this product manual, we have presented our findings in a logical
manner starting with the identification of user needs. Once the problem was identified,
we gathered and prioritized user needs. In order to adhere to client needs, we made
sure that our application would accomplish the standard for current loyalty rewards
systems such as PC Optimum. Hence, our program was designed to take important
client considerations

Deliverable K: User and Product Manual 6

After this, we have carefully highlighted the different resources we used in a Bill of
Materials table and associated the cost required for each component of this project. We
then developed our 3 prototypes tackling front and back-end aspects of the application.
We finally arrived at a finished project which was then tested to see that all critical
aspects have been identified and all requirements have been met.

Set-up Considerations
In order to recreate this project, it is important to understand the different applications
we used. To build our prototypes, we first used Flutter software. In order to get the
system configured, we downloaded an additional Android Application Package (APK)
which allowed us to write code into flutter and test it on an online android phone
provided by the APK software.

In order to configure the node-red system, we downloaded node-red v.2.1.3 from
https://nodered.org/ and then followed the instructions provided in the 'Get started'
section. The last step was to run the node-red software in the local browser. This is
achieved by opening the command prompt and simply typing 'node-red'. Once this is
opened, a dashboard of nodes will be available where the program can be built in so-
called flows.

To get a preview of the UI dashboard, the same localhost link with the added '/ui'
extension can be added. This allows the user to view the final web page.

We also made use of the MongoDB database where we made a free account and
stored information into different categories. This database was then connected to node-
red by the use of an API. To create the API, we simply installed visual studio which is an
IDE to write code.

User Access Considerations
Users are free to access any part of the platform, as long as they are verified and
authorized to do so. This is achieved by validating the user login credentials, thus,
allowing only registered and approved retailers and customers to log in and manage
their points system and points respectively. While consumers are free to make as many
accounts as they wish, retailers can only have one account that will be linked to their
store addresses, and any attempt to make another account will be rejected and fail.

https://nodered.org/
http://localhost/

Deliverable K: User and Product Manual 7

System Organization and Navigation
The UI design is as follows: the page presents the user with a login choice of a regular
user or a retailer. Once picking one of these choices the user will have to login with a
two-factor authentication. The regular users are presented with a dashboard that
outlines offers, their total points, their points activity (points transactions history), and
ways to redeem their points. Retailers are presented with a dashboard as well, however,
with a different configuration and features. The following is displayed on a retailers
dashboard: resource & analytics tab, adding different advertisements, points transaction
history in their store(s), and rewards/item points management. To summarize, the
general layout of the UI strictly avoids complicated routes and focuses on presenting
information tabs on a dashboard which provides key details rather than cluttering the UI.

The UX design displays a merchant page and a user page. The merchant page and the
user page both have a login page that can be accessed with proper credentials. Upon
accessing the user page the user can enter a transaction number and gain points,
meanwhile, for the merchant page the merchant can enter a new item and assign a
point value to that particular item. The item added by the merchant will appear on a
table that will catalog these items.

Exiting the System
Simply close the localhost, and Node-RED flow tabs and close the Node-RED terminal.
These steps for exiting can be applied to exit the setup.

For exiting the system via the UI layout, the user or retailer will simply have to click their
profile and click "log out", which will bring the users back to the login page.

What the final solution is
The following sub-sections provide detailed, instructions on what our solution is and
how to use the various functions or features of our platform integrated onto a bank's
existing platform, where users can access using a portal on their bank's app, and banks
can manage just like any other product they have.

All Users Features

Security

http://localhost/

Deliverable K: User and Product Manual 8

Both retailers and bank clients have good security as they would have to use their
regular bank log in to access the portal. After their login information is inputted into the
system, we use a two-factor authentication, where a user would have to verify their login
through a 3rd party app.

Figure 1. Interface for user to enter their login information with the bank.

Deliverable K: User and Product Manual 9

Help Centre
All users of our platform have access to a help centre on their home page or any page
that they are on. They have access to FAQs to address any problems on the platform or
how to fix any issues you may have. Along with that, there is a live agent option where
they can reach a live agent to help them with any questions and problems they have.

When accessing the live agent option, they would have to wait in a virtual waiting room
until an available agent can take them on to answer their questions and solve any
problems they may be facing.

Figure 2. Verification Loading Page- Interface where user waits for verification being sent.

Deliverable K: User and Product Manual 10

Bank Client's Side of Product

Figure 3. Where the help centre button is located on both the bank and retailer side of the application.

Deliverable K: User and Product Manual 11

View Total Points and Spend at Eligible Retailers
When regular bank clients log onto the platform, they are able to view the total points
they have accumulated across all retailers. The total points that they can spend.(Refer
to figure 4.) When you click on "Eligible Retailers", a user can view the dollars
accumulated at each retailer in dollars, so they do not have to do the math of how much
money they can save at each retailer.

This allows bank clients to know the amount of money they can save at each retailer all
from one spot. They can click on each retailer they have accumulated points with so
they can view any offers they have at each retailer as well.

Figure 4. Bank Client's home page/dashboard.

Deliverable K: User and Product Manual 12

Point Management: Transfer/Donate Points
Bank clients are able to manage their points on this platform by clicking on "Transfer
points" or "Donate points" on the application home page. (Refer to figure 4.)

Client's are able to transfer points from retailers they have points from to anyone who
uses the same banking service as them. They can choose the amount and even add a
message to their transfer.

Along with transferring points, clients can donate points to their favorite charities that
are partnered with certain retailers.

Figure 5. Eligible retailers page.

Deliverable K: User and Product Manual 13

Personalized Offers on Dashboard
Users will be prompted with personalized overs on their home page. Showing
products/offers that match their purchasing history with retailers and certain products.
Providing users an experience that benefits them and their regular spending habits.

Also, they can edit their preferences to products/ retailers in settings if they are not
satisfied with an ads that show on their personal home page.

To view all offers from all retailers registered with their bank, users can click the "Offers"
button locate on the navigation bar to the left. This will lead a user to a page where they
can search up retailers and see all the ads on this platform to browse any new
deals/offers.

For personalized ads to show up on someone's home page, retailers will have to set
their target audience when releasing an ad.(More on that under the Retailer's Side of
Product section).

Figure 6. Transferring/Donating Points Page.

Deliverable K: User and Product Manual 14

View Transaction/ Point Management History
Bank clients can view their transaction and transfer/donation of points history, all from
one place. This makes it easy to refer to when checking on your financials. This is
accessible when clicking on "Activity" button on the navigation bar to the left. (refer to
figure 4.)

Retailer's Side of Product

Figure 7. Personalized Offers on Home Page.

Deliverable K: User and Product Manual 15

Manage Reward Program
Retailers are able to manage their loyalty rewards program where they can set their
own points per dollar for their store, and log items into the system that are associated
with points.

To set their points per dollar at all their stores they would have to access the
"points/dollar" feature on their dashboard, where they can edit the points/$ value of their
store.

Figure 8. Retailer's home page/dashboard.

Deliverable K: User and Product Manual 16

Retailers can log items onto their system and set a point value to each item. They input
the item name, number, category, price, and point/item. This makes it easy for the
system to refer to items with a certain point value or with extra points due to offers.

Figure 9. Point/$ interface.

Deliverable K: User and Product Manual 17

Set Reward Ads
Retailers can get more customers into their stores by setting ads with a target audience
by clicking "Offers Set" or "Your Rewards Ads"(Refer to Figure 8 to see main
dashboard interface) , and set ads just like google ads does. This can increase
exposure to their business if done properly(help via resources provided- more on that
later). Tags that describe your target customer's purchase history can help increase
exposure to them. Our algorithm takes those tags and pushes that ad to customers' (
bank client's) personalized offers page on their dashboard.

A retailer can ad their ad visuals, title, target audience, and a link to a page/ more
information on offer if they would like.

Figure 10. Logging items page. Keeping track of store inventory.

Deliverable K: User and Product Manual 18

A page with ad analytics can help a retailer analyze how their ads are doing. If a retailer
does not understand how a successful ad campaign runs, they can check their
resources to learn how to do this in a simple way.

They can see the number of clicks on their ad, any unique visitors, the number of
people reached, and more. This information can help them improve their business by
giving them feedback on their ads.

Figure 11. Creating a new ad interface to be pushed to target bank client.

Deliverable K: User and Product Manual 19

View Store Transaction History
All customer transactions and points gained can be viewed by clicking on "Points
Activity" on the main page. This is where you can view the names of customers,
transactions, location of store shopped at, points gained/lost, and the amount spent. If
for any reason there is a problem with transactions or point transfer it is good to have a
history to refer back to, to be able to help out bank client's when they run into problems.

Figure 12. Ad analytics that retailers can analyze to improve their business.

Deliverable K: User and Product Manual 20

Access to Resources
When clicking "Resources" on the navigation bar to the left of the screen, retailers are
able to access resources that can help them run their business/ rewards program
optimally using this platform. We understand that not every small business understands
how to run a loyalty rewards program optimally, which is why this page exists, to bridge
the gap in knowledge between big and small retailers. This will truly democratize the
loyalty rewards industry as we try to level the playing field. The resources page should
be able to help them understand how to optimize the usage of this platform, but if they
can not find help on this page, they can access the help centre for personalized help.

Figure 13. Point activity page to log all information.

Deliverable K: User and Product Manual 21

Troubleshooting and Support
Handling and troubleshooting errors for a platform connecting customers to retailers to
banks, requires the utmost attention. In order to efficiently resolve issues, detection,
categorization, and prioritization is very important since, the platform is dealing with a
points economy, which can quickly be destroyed due to bugs, crashes, fraud, phishing
and much more.

Error Messages or Behaviors
Error messages are integral parts of the platform, since, notifying the users of problems
and potentially dysfunctional components is not only helpful for the users to correctly
report these problems, but also for the team to solve them. Some examples, of potential
error messages, include but are not limited to: unstable internet connection, failed
transaction, unable to redeem, invalid login credentials. Of course, if the user input is

Figure 14. Resources page provide links to pages that walk through features and how to optimally use
them. Personalized help can be accessed via Help Centre.

Deliverable K: User and Product Manual 22

invalid, the system will allow the user to re-input the information, however, an error log
will be made to make it easier to track fraudulent activity.

Special Considerations
The UI navigation and certain information load times can be exceptions, as updating the
database and receiving information from the database may take some time, mainly from
refreshing the information. Another limitation for troubleshooting is that the UX can only
host locally on a system if the required development tools and API code is set up in the
right configuration on the system.

Maintenance
The online database must be checked for any bugs in order to ensure that the points
from the users' end are being added and deducted to their respective accounts upon
spending and earning. Furthermore, the functionality for the merchant's page must also
be checked in order to ensure that the items and the points the merchant associated
with the se items are being properly displayed on the catalog page. Lastly, any errors
that users may have encountered must be taken note of and thoroughly investigated to
solve and prevent future errors from happening again.

Support
A help center will be present for all user, however, with a focus on the different features
each type of user has. Therefore, regular consumers/customers will be able to access a
FAQ section that will present an updated list of questions and their answers.
Furthermore, a report section will also be available for the users to report the following:
crashes, fraud, bugs/glitches, or others. If the user wishes to contact the help desk, they
will need to navigate to the contact us page, where they will be able to find the phone
numbers and email addresses they may use to voice their concerns. Out of all reports
fraud will be the team's number one priority since it can be the most damaging to the
reputation of the platform, the second priority will be to fix and bugs or glitches because,
if a crucial functionality of the platform is compromised it can heavily damage the points
economy as well as users. Crashes will be troubleshooted and fixed as quickly as
possible, however, it will be not the top priority unless the amount of crash reports is
abnormally high. This is because crashes may occur for many reasons such as
incompatibility, insufficient system memory, unstable internet, outdated OS, etc... Due to

Deliverable K: User and Product Manual 23

the variability of crashes, it is not the top priority in comparison to something less
variable such as fraud or bugs and glitches. Retailers will have more contacting options
and a different set of FAQs that pertain to managing and using the platform to benefit
from different features such as the resource tab, points transactions,
advertisements/monetization. etc...

Product Documentation

Needs Identification

Benchmarking
Technical and user benchmarking were used to measure other platforms' performance
and try to fill out any gaps. We will provide you with two examples of benchmarking for
PC Optimums and Nojoom Points Rewards.

Technical benchmarking:

PC optimum:

 - Earn points for certain items(ads on flyers, shelves, online portal for bonus items.)

 - "Personalized" offers on PC Optimum App.

 - redeem points for free groceries/merchandise

 - 1,000 points= $1 CAD- redeemable in 10K increments.

 - Base Points Per Dollar Spent: only at Shoppers and Gas Stations

 - Most points come from special offers and bonus points

Nojoom Points Rewards:

 - Tier list split in Red, Silver, Gold and Al-Nokhba where the lowest would get you 15
points for every 4$ spent and the highest would get you 60 points for the same amount
of money spent.

 - Have different tiers of loyalty program members who have more valuable points.

 - Tier list for customer is based on mobile usage prior to loyalty program enrollment.
This is because Ooredoo(owner of Nojoom) is a telecommunications company

Deliverable K: User and Product Manual 24

 - Point redemption only limited to partners which include Fast-food restaurants, clothing
stores and a few hotels as well

 - Tier list split in Red, Silver, Gold and Al-Nokhba where the lowest would get you 15
points for every 4$ spent and the highest would get you 60 points for the same amount
of money spent.

User benchmakring:

PC optimum:

 - People like: Anything that allows them to get bonus points(eg. point multiplier events,
bonus points on certain purchases in the month,etc)

 - People do not like:

1- Some people find it a hassle to have their PC card with them to make purchases, but
most people don't mind as recently it can be added virtually(virtual card)

2- Sometimes people find the 10K increments of point redeeming to be tedious

Nojoom Points Rewards:

 - People like: The largest of its kind in Kuwait, and provides members with a unique
opportunity to collect points and redeem them with the best offers and exclusive
benefits.

 - People do not like: Nojoom awards falling under Ooredoo has a very slow application
that crashes very frequently. The customer service for loyalty points is slow and replies
take a lot of time.

Problem
Until today, no platform democratizes loyalty programs and allows all retailers no matter
their sizes to control or manage their own point system. Moreover, benefits and offers
are limited in terms of redeeming for customers where they can not transfer, exchange
or redeem points without limits. There is still no simple, accessible, and secure way that
eliminates the need of using many platforms and cards to collect points and save
money in regards to customer loyalty. Similarly, there is still no wide accessibility for
smaller retailers where larger ones are dominating the market. To start our journey in
finding a solution, we formulated a short, specific, and interesting problem statement
and referred to it always throughout our progress. The problem statement is: ‘A need
exists to create a highly secure, simple, and compatible platform that can allow users to

Deliverable K: User and Product Manual 25

keep track of loyalty points, and their regular banking information for usage on various
different retail stores, products, and services.’

Design Criteria
User needs were specified and translated into design criteria divided into functional
requirements, non-functional requirements, and constraints.

Priority Design Specification

Functional
Requirements

1 Authentication System for retailers and customers

2 Verify retailers/ Verify Bank Customers

3 Securely store points

4 Store history of redeemed points

5
Simple point gaining system (ability for customers to transfer, exchange
and redeem points).

6 Convert purchases into points

7 Any retailer can sign on to the platform with ease

8 Retailers can manage/set their own point system

9 UI/UX- Clear display of information

10 Point calculator

Non-Functional
Requirements

1 Highly responsive

2 Has simple and intuitive navigation

3 Interactive and has a welcoming user interface

4 Available in various different languages

5 Scalabilty

Constarints

1 Security and privacy

2 Reliability of program

https://www.notion.so/Functional-Requirements-729b0e8072fb4c66acca0a6bf5c751f3
https://www.notion.so/1-cb1013a943b247239e52c1b6aabb7c99
https://www.notion.so/2-8e53a2218223448394f5a23da1332cc4
https://www.notion.so/3-20bce1a5ada14eab8dfa960c692314f7
https://www.notion.so/4-bfd506594bbf4756adae984085701f1a
https://www.notion.so/5-71aa6ecd1aee46a4a1d7525e5cfecfad
https://www.notion.so/6-64f672f81beb420fbfbbae4185c54915
https://www.notion.so/7-740bcde6164a4c958cce2d024580acdc
https://www.notion.so/8-95b093b813004c05a4edf1f9769f9fc4
https://www.notion.so/9-9537884a2d1448d8ba0d1571a278194c
https://www.notion.so/10-0ef2d549a2ab4aa19db1dc1ec92fab73
https://www.notion.so/Non-Functional-Requirements-cac16387950447d19942cfc982ee0602
https://www.notion.so/1-eb629120715e44d1ba7ebf6711cef186
https://www.notion.so/2-7c6839b703d346e2a5364ef6e2cd55e2
https://www.notion.so/3-77c381485be745289690e544a7cf4635
https://www.notion.so/4-885b721c929e4874a0e71830b45d2b18
https://www.notion.so/5-b8818d05b270480585b1f3f3f57365e1
https://www.notion.so/Constarints-02170b13f411421c82cbb475577d5f6a
https://www.notion.so/1-c9b3ec89b83047e1895dc52fc3972470
https://www.notion.so/2-4a1e4c29dbc6497bac1cbae5b9eee8cb

Deliverable K: User and Product Manual 26

Priority Design Specification

3 User Interface/ User experience

4 Compatibility with all devices

5 Limit for spending points

6 Info-graphs on pages

Bill of Materials
BOM

Product Cost Links
Temporary

Component

Figma $15/month https://www.figma.com/pricing/
final

prototype 2

Notion $5/month https://www.notion.so/product final

Wrike Free https://www.wrike.com/ temporary

MongoDB
0$ or $0.30/million
reads

https://www.mongodb.com/pricing
final

prototype 3

Node RED 0$ https://nodered.org/
final

prototype 3

LucidCharts 120$/year https://lucid.co/product/lucidchart temporary

Firebase API/
libraries
Reference

0$- free and open-
source mobile UI
framework

https://flutter.dev/docs
prototype 1

temporary

Flutter
0$- free and open-
source mobile UI
framework

https://flutter.dev/docs
prototype 1

temporary

How Our Final Solution Was Built

https://www.notion.so/3-164cb7edb70a4229a3f418f7eaa05bfd
https://www.notion.so/4-83b63d87df3540db99ef1c1bbe4edf23
https://www.notion.so/5-151f4dff472b4ac4ada1f41460d0cdaa
https://www.notion.so/6-66c4ec0e11ba436682718fa9a170ca14
https://www.notion.so/Figma-84cc29bc3ff946e4a0490ea2fd3d3e00
https://www.figma.com/pricing/
https://www.notion.so/Notion-7e54cf7401e1488087dcb0618559fcb0
https://www.notion.so/product
https://www.notion.so/Wrike-5b4d2bdc9eda49419a1eb28e7c5079bc
https://www.wrike.com/
https://www.notion.so/MongoDB-fb50131eec1e48f8abc279afacfd7145
https://www.mongodb.com/pricing
https://www.notion.so/Node-RED-27f78fd9508a4897a5d8432dccc5428c
https://nodered.org/
https://www.notion.so/LucidCharts-03605542e5dd456b9c208c2f251853f8
https://lucid.co/product/lucidchart
https://www.notion.so/Firebase-API-libraries-Reference-e5f572bad8534a918935fbdd428d987c
https://flutter.dev/docs
https://www.notion.so/Flutter-2639c7d3035e403c932ff515871bf81a
https://flutter.dev/docs

Deliverable K: User and Product Manual 27

Our final solution is built into two high fidelity components: 1) the user interface 2) An
app with a functioning backend.

The user interface is built using a tool called Figma. The main purpose of the Figma
prototype is the show how the user interacts with the app, and how the final product
would look like. Using Figma we were able to build an interface users can interact with ,
which simulates how it would be like to use the actual app.

This final prototype started out by building the bare-bone wireframes with all the desired
features we would like to present to any user to test(bank client/retailer). This list
included a user login page, verification page, bank client dashboard/offers/activity/
eligible retailers/ point management pages, and the retailers dashboard/resources/
offers/ ads/ rewards and points management pages

After having the bare design of the wireframes, we looked into the optimal way a user
can access each feature and how their interaction with a feature should look like. A user
should be able to access all features desired within 3 clicks, no more, to keep the
program simple to use. This is when we added any animated "interactions with the

Figure 15. Initial wireframes with all desired features on Figma.

Deliverable K: User and Product Manual 28

product like clicking on buttons, connecting pages together, and added editing and
typing animations to simulate the management of points. This is all to simulate how
interacting with the functional app should look like.

This simulated the functionality of the app when interacting with the Figma prototype,
but this had no backend to store the data of the app. To build a functioning app with a
backend, we used NodeRed to build the frontend/ functionality and connected it to
MongoDB to store the data.

NodeRed is a tool that uses flow-editors(refer to figure 20 and 22) to build programs in
a visual manner to create JavaScript functions. This was used to create functioning
APIs, such as one to ensure the right details have been entered when trying to log in,
that convey information back and forth from front end to backend.

Before starting to create flows on NodeRed, first, we had to think about which data has
to be stored, pulled, and referred to when users interact with the program. Then, think
about how they interact with each other as part of the backend of the program.

To store the data to refer to, pull, or interact with in any way, we create tables/ a
database on MongoDB that are connected to the NodeRED that the program can
access while a user interacts with the frontend. (Refer to figure 21)

Figure 16. A look at all the wireframes and their interactions with each other on Figma.

Deliverable K: User and Product Manual 29

The purpose of the NodeRed/ MongoDB prototype is to show that we can build
something functional that users can use.

Prototypes

Prototype 1
Prototype 1 consisted of a transaction number page, a tab layout, and a landing page
for bank clients, retailers and customers. The transaction page and the tabs were
constructed with the use of flutter in Android studio, where any required packages were
installed.

Deliverable K: User and Product Manual 30

This user interface above allows entry of a particular transaction number that would be
associated with a particular bank and particular item (e.g. Scotia bank and bread) and
stores it. This value is made to be outputted to show that the system has accepted the
integer transaction number.

Figure 17: Transaction Number Interface

Deliverable K: User and Product Manual 31

The dashboard will display a brief rundown of recent activities such as the net points
related to the store, the store location, staff, manager, and any other information that

Figure 18: The page above is to be observed by retailers once they have logged into the system with
their information. From this page, retailers will have control over multiple tabs which include a
dashboard, a resource page, a points inventory, points transactions history, and a help center.

Deliverable K: User and Product Manual 32

identifies the store owned by the retailer. The resource tab will display graphs that
represent the data accumulated by the points history tab and also provide descriptive
statistics such as an average loss/gain of points, general frequencies of how the points
are spent and gained. The points inventory section allows the retailer to set points for
possible trend items and also set point costs for rewards, etc... The points transaction
history is the more in depth logging of every transaction made. Lastly, the help center
will provide FAQs and other venues of seeking technical help.

A similar page is made for users which will have a dashboard containing tabs
associated with viewing history of points, point redeeming, points collected for each
retailer and based on that, offers available.

import 'package:flutter/material.dart';
import 'package:draw_graph/draw_graph.dart';
import 'package:draw_graph/models/feature.dart';
void main() {
 runApp(const TabBarDemo());
}

class TabBarDemo extends StatelessWidget {
 const TabBarDemo({Key? key}) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 home: DefaultTabController(
 length: 5,
 child: Scaffold(
 appBar: AppBar(
 backgroundColor: Color(0xFFFF4081),
 bottom: const TabBar(
 tabs: [
 Tab(icon: Icon(Icons.dashboard_sharp)),
 Tab(icon: Icon(Icons.bar_chart_sharp)),
 Tab(icon: Icon(Icons.inventory_sharp)),
 Tab(icon: Icon(Icons.price_change_sharp)),
 Tab(icon: Icon(Icons.help_center_sharp)),
],
),
 title: const Text('Welcome Retailer'),
),
 body: const TabBarView(
 children: [
 Icon(Icons.dashboard_sharp),
 Icon(Icons.bar_chart_sharp),
 Icon(Icons.inventory_sharp),
 Icon(Icons.price_change_sharp),
 Tab(icon: Icon(Icons.help_center_sharp)),

Deliverable K: User and Product Manual 33

],
),
),
),
);
 }
}

class GraphScreen extends StatefulWidget {
 @override
 _GraphScreenState createState() => _GraphScreenState();
}

class _GraphScreenState extends State<GraphScreen> {
 final List<Feature> features = [
 Feature(
 title: "Flutter",
 color: Colors.blue,
 data: [0.3, 0.6, 0.8, 0.9, 1, 1.2],
),
 Feature(
 title: "Kotlin",
 color: Colors.black,
 data: [1, 0.8, 0.6, 0.7, 0.3, 0.1],
),
 Feature(
 title: "Java",
 color: Colors.orange,
 data: [0.4, 0.2, 0.9, 0.5, 0.6, 0.4],
),
 Feature(
 title: "React Native",
 color: Colors.red,
 data: [0.5, 0.2, 0, 0.3, 1, 1.3],
),
 Feature(
 title: "Swift",
 color: Colors.green,
 data: [0.25, 0.6, 1, 0.5, 0.8, 1,4],
),
];

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 backgroundColor: Colors.white54,
 appBar: AppBar(
 title: Text("Flutter Draw Graph Demo"),
 automaticallyImplyLeading: false,
),
 body: Column(
 mainAxisAlignment: MainAxisAlignment.spaceAround,
 crossAxisAlignment: CrossAxisAlignment.center,

Deliverable K: User and Product Manual 34

 children: <Widget>[
 Padding(
 padding: const EdgeInsets.symmetric(vertical: 64.0),
 child: Text(
 "Tasks Management",
 style: TextStyle(
 fontSize: 28,
 fontWeight: FontWeight.bold,
 letterSpacing: 2,
),
),
),
 LineGraph(
 features: features,
 size: Size(420, 450),
 labelX: ['Day 1', 'Day 2', 'Day 3', 'Day 4', 'Day 5', 'Day 6'],
 labelY: ['25%', '45%', '65%', '75%', '85%', '100%'],
 showDescription: true,
 graphColor: Colors.black87,
),
 SizedBox(
 height: 50,
)
],
),
);
 }
}

Figure 19: Above is the flutter code to achieve the retailer dashboard.

Deliverable K: User and Product Manual 35

Prototype 2
Prototype 2 marked a pivot in the team's choice of software from flutter to Node-RED
and MongoDB as an online database. This prototype consisted of Figure 13-16 and a
low-medium fidelity Node-RED program.

Figure 20. The page above is the landing page for bank clients, retailers, and bank employees. The
user will be prompted to enter their email and a password which will allow login into their system and

retrieve a personalized dashboard for the user.

Deliverable K: User and Product Manual 36

These nodes creates a drop-down menu that allows retailers to assign point to certain
items. However, this prototype has not been connected to a MongoDB database yet,
which has become the priority.

Prototype 3
Our prototype 3 was designed using node-red software. This allows users to use 'nodes'
to carry out different functions to eventually build a UI dashboard. Our objective with this
prototype was to create a dashboard where retailers can allocate points to each
category of product at their store, and bank clients to redeem and store points. In order
to do this, we created a database with test data and different APIs on Visual Studio that
linked the node-red software to the database.

Figure 21: Node-RED Merchant item catalogue nodes

Deliverable K: User and Product Manual 37

MongoDB databases:

As seen above, we created four different databases to store different information. The
product database stores information about the product name, transaction number, and
points associated. The login page contains information about the username and
password, and whether the user is a retailer or bank client. The Merchant details
database contains a unique product ID, product name, and points associated. Finally,
the transaction details database contains transaction numbers and email ID details. It's
quite clear that sections in one database and found in another and hence, the
databases are all connected to each other. This cannot directly be accessed until an
API is created.

Login page UI nodes

Figure. 22.a MongoDB databases

Deliverable K: User and Product Manual 38

The Node-red software allows us to create a flow of processes that we want the login
page to accomplish. The light blue node allows user input, which then leads to the
calling of an API that retrieves login information from the database. If this input
information is equal to the one provided on the database, the tabs will switch
accordingly depending on if the user is a retailer or bank client.

Login information API

 Figure 22.b. Login UI nodes

Deliverable K: User and Product Manual 39

Above is the API that compares the input from the user with the login information on the
database. A value of U is returned if the user is a bank client and M is returned if the
user is a retailer. The corresponding switch node decides what tab to switch to next. If
neither condition is met, a value of 1 is returned.

Login page UI dashboard

Figure 23. Login information API

Figure 24. Login page UI dashboard

Deliverable K: User and Product Manual 40

And hence, the login page that will be displayed to the user is displayed above. If the
login database is examined, a username of 'Shopper DrugMart' and password of
'12345' corresponds to retailer's login information.

Transaction info UI nodes

Although daunting at first, the placement of the nodes is very systematic. This page is
the next page that will be shown after the login page for bank clients. As seen before,
the user is prompted to enter information. in this case, information about the transaction
number and email for verification. Again this leads to the calling of a different API that
displays the product and points added to the bank client's account.

Transaction validation and product-points retrieval API

Figure 25. Transaction info UI nodes

Deliverable K: User and Product Manual 41

The API above is responsible for firstly ensuring the transaction information is correct
and corresponds to the one mentioned on the database, and secondly retrieves and
displays the product name and points earned.

Transaction page for bank client dashboard UI and error handling

Figure 26. Transaction validation and product-points retrieved API

Deliverable K: User and Product Manual 42

the correct details entered will lead to a display of the points table. As shown above, the
correct transaction number and email are 1234 and bob@gmail.com respectively. The
Transaction number type-in box only accepts integer input and the Email box allows
string input. If any of these conditions are not met, an error message will be visible to
the user as shown above(Incorrect Transaction number and Email ID). To improve, we
will be focusing on the UI aspect of the application since functional requirements have
been met.

Bank client points table UI dashboard

Figure 27. Transaction page for bank client dashboard UI and error handling

Figure 28. Bank client points table UI dashboard

Deliverable K: User and Product Manual 43

The products table contains the details of the product corresponding to the transaction
number. This is retrieved from the MongoDB database where information for a particular
item is contained in a table. The transaction number 1234 corresponds to a charger and
has associated with it 5 points.

Retailers page UI nodes

In this specific flow, there are various features. Firstly, to improve the User experience,
we used a light blue node to display a logout button to exit the program and return to the
login page. As seen above, multiple logout nodes are visible as they are displayed on
different pages. On the retailer's page, the http node highlighted calls the contents of the
merchant points table in the database and displays the information. On the same page,
the 'Add Products' button node when pressed, takes the user to another page where
points can be allocated. On this merchant page, two dropdown nodes names Category
and Points are visible. Each category has been filled with different dropdown options
that the retailer has the freedom to choose. Once selected, the 'ADD' node is pressed.

 Figure 29. Retailers page UI nodes

Deliverable K: User and Product Manual 44

This leads to a function which calls the API to add selection to the 'Merchant_details'
database. Finally, an 'All Products List' button has been added to easily navigate back to
the initial retailer page.

Retailers Points table

After retailers have successfully entered login details, the table above will be visible
which is edited once the 'ADD PRODUCTS' button is clicked. In the current page,
retailers has the option to either log out or continue setting points to each category of
product. A unique Product ID is associated to ensure updated point entries are different.

Product-points add dashboard UI

Retailers will be able to select exactly what category and points are rewarded from a
dropdown box. Once the 'ADD' button is clicked, the information has been added to the
database and can then be displayed on the Merchant Points table shown previously.

Merchant details-add and retrieve API

 Figure 30. Retailers Points table

Figure 31. Product-points add dashboard UI

Deliverable K: User and Product Manual 45

This JavaScript code allows products, points, and a unique product ID to be entered into
the system database. Contents added can then be retrieved from the database and
displayed in the form of a table.

Testing and Validation
The procedure of creating the primary prototype with the use of Node-Red and
MongoDB was re-created on a new system, which allowed for a collaborative effort on
the completion of the prototype as the second system was used for testing purposes.

The testing was performed on both the original version of the prototype and on a test
version that is located on different computers. As there is a delay in delivering the code
and implementing it in the test version of the prototype, testing does not happen
simultaneously but rather with 1-2 days of delay. The testing, therefore, verifies that the
prototype can run on multiple devices simultaneously. Testing and troubleshooting

 Figure 32. Merchant details-add and retrieve API

Deliverable K: User and Product Manual 46

transactions, point redemption, and management which are back-end oriented is being
handled by team members that are doing the UX testing and development. Meanwhile,
UI refinements and any UI software changes are being handled by the front-end-
oriented team. While some UI aspects that are integral for testing the back-end code
and database connection will be checked and refined by the back-end team. Validation
of the main functionalities and the ability of the online database to handle multiple
systems simultaneously is successful.

Conclusion and Recommendations for
Future Work
In conclusion, this user and product manual helps in providing a deeper overview of our
product and interprets all the steps that were taken to build it. Our loyalty-program-
related platform will guarantee limitless applications for bank customers where they will
be able to transfer, exchange, and redeem points using only our app and their bank
cards. Moreover, retailers of all sizes will be able to sign onto our app where each can
set and manage their own point system. Following this user manual, all readers will be
able to use the platform with ease, and go through the troubleshooting and support
section when experiencing any errors. While building the platform, the design thinking
process was followed and applied in which benchmarking different products, setting
design criteria, and more importantly, understanding the problem and formulating a
good problem statement took place. Three detailed prototypes were presented to show
how we came up with the final functional platform using NodeRed and MongoDB, and a
functional user interface using Figma. All functioning apps were tested and validated
following a test plan, and they are well illustrated using proper documentation.

Significantly, our app interface only shows how the full-functioning final product will look
like so it is recommended that readers and users always check for updates and
improvements. We will be working on finalizing the platform where users can greatly
enjoy the new approach of loyalty programs.

References
N/A

Deliverable K: User and Product Manual 47

Appendices
Please do check our maker-repo where we have documented our journey:

https://makerepo.com/HatimShakir/1012.a8-points-do-not-lie

https://makerepo.com/HatimShakir/1012.a8-points-do-not-lie

